Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 39: 479-491, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38883318

ABSTRACT

The study examines the impact of microstructure and polymethyl methacrylate (PMMA) grafting on the degradability of Zn-Mg alloys. The mechanical properties of a Zn alloy containing 0.68 wt% Mg and extruded at 200 °C are enhanced for degradable load-bearing applications, addressing a crucial need in the field. The material exhibits a bimodal grain size distribution that is random texture, consisting of secondary phases, grains, and sub-grains. With an elongation to failure of 16 %, the yield and ultimate tensile strengths are 325.9 and 414.5 MPa, respectively, and the compressive yield strength is 450.5 MPa. The "grafting-from" method was used to coat a few micrometers thick of PMMA on both bulk and scaffold Zn alloys to mitigate the corrosion rate. The last one is a porous structure, with a porosity of 65.8 %, considered as in the first approach of an orthopedic implant. After being immersed for 720 h, the PMMA-grafted bulk alloy's corrosion rate decreased from 0.43 to 0.25 mm/y. Similarly, the scaffold alloy's corrosion rate reduced from 1.24 to 0.49 mm/y. These results indicate that the method employed could be used for future orthopedic applications.

2.
Heliyon ; 9(6): e16700, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37346339

ABSTRACT

This paper presents a comprehensive review of the successful application of Severe Plastic Deformation (SPD) in producing ultra-fine grained (UFG) and nano-structured crystalline bulk materials. SPD achieves outstanding grain refinement without significantly altering the original dimensions of the workpiece, making it particularly useful for ductile materials that can withstand large strains under high hydrostatic pressure before failure. The study explores the grain refining mechanism during severe plastic deformation and its impact on the microstructure of metals. It also examines the use of SPD in hard to deform brittle materials like tungsten oxide, B2O3 glasses, and amorphous materials. The paper discusses the advantages and disadvantages of each technique, along with their applications and potential for combining more than one technique. The review is significant because it emphasizes recent progress in process development, which could potentially enable the industrialization of certain SPD techniques for specific applications. This paper fills the gap in the literature by addressing this issue. Overall, the review demonstrates the potential of SPD in metalworking and its application in the development of new UFG materials with improved mechanical properties.

3.
Materials (Basel) ; 16(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36676444

ABSTRACT

Although zinc (Zn) is one of the elements with the greatest potential for biodegradable uses, pure Zn does not have the ideal mechanical or degrading properties for orthopaedic applications. The current research aims at studying the microstructure and corrosion behaviour of pure Zn (used as a reference material) and Zn alloyed with 1.89 wt.% magnesium (Mg), both in their extruded states as well as after being coated with polymethyl methacrylate (PMMA). The grafting-from approach was used to create a PMMA covering. The "grafting-from" method entails three steps: the alkali activation of the alloys, their functionalization with an initiator of polymerization through a phosphonate-attaching group, and the surface-initiated atom transfer radical polymerisation (SI-ATRP) to grow PMMA chains. Electrochemical and immersion corrosion tests were carried out in a simulated body fluid (SBF), and both confirmed the enhanced corrosion behaviour obtained after coating. The electrochemical test revealed a decrease in the degradation rate of the alloy from 0.37 ± 0.14 mm/y to 0.22 ± 0.01 mm/y. The immersion test showed the ability of complete protection for 240 h. After 720 h of immersion, the coated alloy displays minute crevice corrosion with very trivial pitting compared to the severe localized (galvanic and pitting) corrosion type that was detected in the bare alloy.

4.
Mater Sci Eng C Mater Biol Appl ; 33(7): 4126-32, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23910323

ABSTRACT

In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Materials Testing/methods , Mechanical Phenomena , Nanocomposites/chemistry , Oxides/chemistry , Nanocomposites/ultrastructure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...