Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Microbiol ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37851202

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are considered substances of potential human health hazards because of their resistance to biodegradation and carcinogenic index. Chrysene is a PAH with a high molecular weight (HMW) that poses challenges for its elimination from the environment. However, bacterial degradation is an effective, environmentally friendly, and cost-effective solution. In our study, we isolated a potential chrysene-degrading bacteria from crude oil-contaminated seawater (Bizerte, Tunisia). Based on 16SrRNA analysis, the isolate S5 was identified as Achromobacter aegrifaciens. Furthermore, the results revealed that A. aegrifaciens S5 produced a biofilm on polystyrene at 20 °C and 30 °C, as well as at the air-liquid (A-L) interface. Moreover, this isolate was able to swim and produce biosurfactants with an emulsification activity (E24%) over 53%. Chrysene biodegradation by isolate S5 was clearly assessed by an increase in the total viable count. Confirmation was obtained via gas chromatography-mass spectrometry (GC-MS) analyses. A. aegrifaciens S5 could use chrysene as its sole carbon and energy source, exhibiting an 86% degradation of chrysene on day 7. In addition, the bacterial counts reached their highest level, over 25 × 1020 CFU/mL, under the conditions of pH 7.0, a temperature of 30 °C, and a rotary speed of 120 rpm. Based on our findings, A. aegrifaciens S5 can be a potential candidate for bioremediation in HMW-PAH-contaminated environments.

2.
Curr Microbiol ; 78(3): 887-893, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33515321

ABSTRACT

Virtually all bacterial species synthesize high levels of (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the stringent response and other stresses in bacteria. relA and spoT genes are, respectively, involved in synthesis and synthesis/biodegradation of (p)ppGpp. We aimed in this work to evaluate the impact of static magnetic field (SMF) 200 mT exposure on the expression of relA and spoT genes in Salmonella enterica Hadar. Bacteria were exposed to a SMF during 9 h, and RNA extraction was followed by reverse transcriptase polymerase chain reaction (RT-PCR). The relative quantification of mRNA expression levels using the 16S rRNA reference gene did not change during the SMF exposure. However, results showed a significant increase in gene expression for relA after 3 h of exposure (P < 0.05) and after 6 h for spoT (P < 0.05). The differential gene expression of relA and spoT could be considered as a potential stress response to a SMF exposure in Salmonella related to the production/degradation of (p)ppGpp.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression , Ligases/genetics , Magnetic Fields , RNA, Ribosomal, 16S , Salmonella
3.
Bioelectrochemistry ; 122: 134-141, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29627665

ABSTRACT

The aim of this work is to demonstrate the effects of a static magnetic field (SMF) with an induction 12 equal to 57mT on the viability and membrane lipid composition of Salmonella Hadar. Results showed an increase in the viability of exposed bacteria compared to controls after 9h of exposure. Analysis with gas chromatography of total lipids (TLs) and different fractions of phospholipids: phosphatidylglycerols (PGs), phosphatidylethanolamines (PEs), and cardiolipins (CLs), separated by thin layer chromatography revealed changes in fatty acid levels during exposure. For TLs, the unsaturated fatty acids/saturated fatty acids ratio (UFAs/SFAs) had significantly increased after 9 h of exposure. The variation of this ratio seems to be essentially due to the increase of the proportion of unsaturated fatty acids with 18 carbons, in particular C18:1. The analyses of fatty acid composition carried out on the scale of each fraction of phospholipids showed that CLs contributed significantly to the increase of the proportion of the unsaturated fatty acids between 6 and 9h of exposure thanks to their unsaturated chains with 18 carbons (especially C18:2). CLs appear to be the main phospholipid involved in the adaptation of S. Hadar membranes to the SMF.


Subject(s)
Membrane Lipids/analysis , Salmonella/chemistry , Salmonella/cytology , Adaptation, Biological , Cardiolipins/analysis , Cardiolipins/metabolism , Fatty Acids/analysis , Fatty Acids/metabolism , Magnetic Fields , Membrane Lipids/metabolism , Microbial Viability , Salmonella/physiology
4.
Microb Pathog ; 111: 414-421, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28923603

ABSTRACT

We aimed in this work to evaluate the effect of static magnetic field 200 mT (SMF) on the expression of genes involved in the biosynthetic pathway of cardiolipin: g3pd, plsB, cdsA, pgsA, pgpA, cls and phosphatidylethanolamine: pssA and psd in Salmonella enterica subsp enterica serovar Hadar. Bacteria were exposed to a SMF during 3, 6 and 9 h. RNA extraction was followed by Reverse Transcriptase Polymerase Chain Reaction RT-PCR. The relative quantification of mRNA expression levels using 16S rRNA doesn't change during the time exposure. RT-PCR was done for two exposure experiments. The gene expression using RT-PCR present no significant difference in case of plsB, cdsA, pgpA, pgsA and psd genes during the different exposure times. However, a significant increase was observed in the expression of g3pd and pssA genes after 6 h and for cls gene after 3 h of exposure, but any variation was notified after 9 h of exposure. So we can conclude from this study that cls, g3pd and pssA genes are required in the adaptation of Salmonella Hadar to SMF.


Subject(s)
Bacterial Proteins/genetics , Cardiolipins/biosynthesis , Phosphatidylethanolamines/biosynthesis , Salmonella enterica/chemistry , Salmonella enterica/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Magnetic Fields , Salmonella enterica/metabolism
5.
Microb Pathog ; 108: 13-20, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28455137

ABSTRACT

We have been interested, in this work, to investigate the effect of the exposure to static magnetic field at 200 mT (SMF) on the fatty acid (FA) composition of Salmonella enterica subsp Enterica serovar Hadar isolate 287: effects on the proportion of saturated and unsaturated fatty acids (SFAs, UFAs), cyclopropane fatty acids (CFAs) and hydroxy fatty acids after exposure to the static magnetic field at 200 mT (SMF). Analysis with Gas Chromatography-Mass Spectrometry (GC-MS) of total lipid showed that the proportion of the most fatty acids was clearly affected. The comparison of UFAs/SFAs ratio in exposed bacteria and controls showed a diminution after 3 and 6 h of exposure. This ration reached a balance after 9 h of treatment with SMF. So we can conclude that S. Hadar tries to adapt to magnetic stress by changing the proportions of SFAs and UFAs over time to maintain an equilibrium after 9 h of exposure, thus to maintain the inner membranes fluidity. Also, a decrease in the proportion of hydroxy FAs was observed after 6 h but an increase of this proportion after 9 h of exposure. Concerning CFAs, its proportion raised after 6 h of exposure to the SMF but it decreased after 9 h of exposure. These results are strongly correlated with those of cfa (cyclopropane fatty acid synthase) gene expression which showed a decrease of its expression after 9 h of exposure.


Subject(s)
Fatty Acids/analysis , Magnetic Fields , Salmonella enterica/metabolism , Salmonella enterica/radiation effects , Cyclopropanes/analysis , Cyclopropanes/chemistry , Fatty Acids/chemistry , Fatty Acids/genetics , Fatty Acids, Unsaturated/analysis , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Bacterial/radiation effects , Membrane Fluidity/radiation effects , Membrane Lipids , Methyltransferases/genetics , Methyltransferases/radiation effects , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/genetics , Salmonella enterica/genetics , Time Factors
6.
Can J Microbiol ; 62(4): 338-48, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26928316

ABSTRACT

The present study investigated the adaptation of Salmonella enterica subsp. enterica serovar Hadar to static magnetic field (SMF) exposure (200 mT, 9 h). The proteomic analysis provides an overview of potentially important cytosolic proteins that Salmonella needs to regulate to survive and adapt to magnetic stress. Via 2-dimensional electrophoresis and liquid chromatography tandem mass spectrometry, we compared cytosolic proteomes before and after exposure to magnetic field. A total of 35 proteins displaying more than a 2-fold change were differentially expressed in exposed cells, among which 25 were upregulated and 10 were downregulated. These proteins can be classified mainly into 6 categories: (i) proteins involved in metabolic pathways of carbohydrates, (ii) chaperones and proteins produced in response to oxidative stress, (iii) proteins involved in energy homeostasis, (iv) elongation factors (EF-Tu and EF-Ts), (v) proteins involved in motility, and (vi) proteins involved in molecules transport. Many of the presented observations could be explained, while some represent still-unknown mechanisms. In addition, this study reveals 5 hypothetical proteins. It seems that the stress response to SMF (200 mT) is essentially set up to avoid oxidative damages, with the overexpression of proteins directly involved in oxidative stress response and metabolic switches to counteract oxidative stress. Interestingly, several proteins induced under SMF exposure are found to overlap with those induced by other stresses, such as heat shock and starvation.


Subject(s)
Bacterial Proteins/metabolism , Proteome/metabolism , Salmonella enterica/metabolism , Adaptation, Physiological , Cytosol/metabolism , Energy Metabolism , Gene Expression Regulation, Bacterial , Magnetic Fields , Metabolic Networks and Pathways , Molecular Chaperones/metabolism , Peptide Elongation Factors/metabolism , Proteomics
7.
Int J Food Microbiol ; 157(2): 259-66, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22682582

ABSTRACT

This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (p<0.05) of CFU at 6h, followed by an increase between 8 and 10h. Growth of the dam mutant was significantly affected (p<0.05) after 6h and no recovery was observed until 10h, highlighting a different behavior of SMF stressed wild-type and dam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (p<0.05) for both strains. The net increase of the total UFAs to total SFAs ratios seemed to result mainly from the increase of (C18:1) proportion (p<0.05) and to a lower extent from that of (C16:1) (p<0.05). These modifications of cyclic and unsaturated fatty acid proportions constitute an adaptive response to SMF stress in S. typhimurium wild-type and dam mutants to maintain an optimum level of membrane fluidity under SMF.


Subject(s)
Magnetic Fields , Membrane Fluidity , Salmonella typhimurium/growth & development , Cardiolipins , Disinfection/methods , Fatty Acids/analysis , Fatty Acids, Unsaturated/physiology , Membrane Lipids , Phospholipids , Salmonella typhimurium/chemistry , Salmonella typhimurium/physiology , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism
8.
Foodborne Pathog Dis ; 6(5): 547-52, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19422305

ABSTRACT

In the present study, we investigated the effect of exposure to A static magnetic field (SMF) on cell growth, viability, and gene expression of Salmonella enterica subsp. enterica serovar Hadar. Our results indicated that SMF exposure (200 mT, 13 hours) failed to alter cellular growth but induced a decrease of colony-forming units (CFU) between 3 and 6 hours followed by an increase from 6 to 9 hours. The analysis of the differential expression of rpoA, dnaK, katN, and 16S rRNA genes under SMF exposure (200 mT, 10 hours) showed that the expression level of the 16S rRNA mRNA remained stable during the exposure and can thus be used as a reference gene for the analysis on the differential gene expression of Salmonella Hadar. Interestingly, mRNAs of rpoA, katN, and dnaK genes were over-expressed following 10 hours of SMF exposure (200 mT). These data suggest a possible stress response of Salmonella Hadar to static magnetic field.


Subject(s)
Cell Division , Gene Expression , Magnetics , Microbial Viability , Salmonella enterica/cytology , Salmonella enterica/genetics , Adenosine Triphosphatases/genetics , Bacterial Proteins/genetics , Catalase/genetics , Kinetics , RNA Polymerase I/genetics , RNA, Messenger/genetics , RNA, Ribosomal, 16S/genetics , Reverse Transcriptase Polymerase Chain Reaction
9.
C R Biol ; 330(8): 576-80, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17637438

ABSTRACT

The DNA adenine methylase of Salmonella typhimurium methylates adenine at GATC sequences. Strains deficient in this methylase are not well transformed by methylated plasmids, but unmethylated plasmids transform them at high frequencies. Hemimethylated daughter molecules accumulate after the transformation of dam(-) strains with fully methylated plasmids, suggesting that hemimethylation prevents DNA replication. It will also be shown that plasmids isolated from dam(-) bacteria are hemimethylated by restriction enzyme digestion. These results may explain why newly formed daughter molecules are not substrates for immediate reinitiation of DNA replication in dam(-) bacteria.


Subject(s)
DNA Methylation , DNA Replication , DNA, Bacterial/genetics , Salmonella typhi/genetics , Plasmids , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...