Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1228, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216651

ABSTRACT

Shortage of drinking water has gained potential interest over the last few decades. Discharged industrial effluent, including various toxic pollutants, to water surfaces is one of the most serious environmental issues. The adsorption technique has become a widely studied method for the removal of toxic pollutants, specifically synthetic dyes, from wastewater due to its cost-effectiveness, high selectivity, and ease of operation. In this study, a novel gelatin-crosslinked-poly(acrylamide-co-itaconic acid)/montmorillonite (MMT) nanoclay nanocomposites-based adsorbent has been prepared for removing malachite green (MG) dye from an aqueous solution. Modified gelatin nanocomposites were synthesized using a free-radical polymerization technique in the presence and absence of MMT. Various analytical instrumentation: including FTIR, FESEM, XRD, and TEM techniques were used to elucidate the chemical structure and surface morphology of the prepared samples. Using a batch adsorption experiment, Langmuir isotherm model showed that the prepared modified gelatin nanocomposite had a maximum adsorption capacity of 950.5 mg/g using 350 mg/L of MG dye at pH 9 within 45 min. Furthermore, the regeneration study showed good recyclability for the obtained nanocomposite through four consecutive reusable cycles. Therefore, the fabricated gelatin nanocomposite is an attractive adsorbent for MG dye elimination from aqueous solutions.

2.
Environ Monit Assess ; 195(1): 61, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36326936

ABSTRACT

Siwa Oasis is of great historical, environmental, and scientific importance, as it contains unique archeological and geological features. Groundwater is the main source of freshwater in that oasis. The carbonate aquifer groundwater, used for irrigation, was sampled to evaluate factors controlling quality changes spatially and temporally by applying hydrochemical and statistical analyses. The salinity of the aquifer varied spatially from 1367 to 8645 mg/l based on one hydrogeological condition, with the highest TDS (> 5432.5 mg/l, 25% of samples) at the central part of the study area. Temporally, the salinity changed slightly from 3754.3 mg/l (in 2014) to 4222.4 mg/l (in 2020). The cession of illegal wells, pumping control, and excavation of formed salts have a noticeable impact on salinity (mediate the increase in salinity) and ions. However, about 61% of the studied samples can be considered unsuitable for irrigation owing to salinity and can harm plant yield. The heavy metals studied (Fe, Mn, Cu, Pb), except Cd, were within the permissible limit for irrigation water. Finally, it is proposed to construct desalination stations to enhance water quality for irrigation in the study area and set up many companies for salt extraction.


Subject(s)
Groundwater , Water Pollutants, Chemical , Environmental Monitoring , Groundwater/analysis , Water Quality , Water Wells , Salinity , Water Pollutants, Chemical/analysis
3.
Environ Geochem Health ; 43(11): 4533-4551, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33900509

ABSTRACT

Groundwater represents the primary source of freshwater for more than 35% of world people, and its contamination became a worldwide challenge. Egypt is suffering from water quantity and quality, especially in desert areas. El Obour city and environs Northeast Cairo face waterlogging owing to the elevated-shallow groundwater table. In the present research work, the water quality of the shallow groundwater aquifer was studied. The remediation efficiency of polluted water using photocatalytic treatment technique in the presence of modified nano-titania and solar radiation has also been investigated. Twenty-eight representative samples have been collected from different locations, and their microbial, physical, and chemical characteristics were determined. The average contents of Pb (214.96 µg/L), As (1517 µg/L), Cd (8.79 µg/L), total bacterial count (2.22 × 105 CFU/ml), and bacterial indicators (MPN-index/100 ml): total coliform (497.4), fecal coliform (358.3), and fecal streptococci (115.9) were higher than WHO permissible limits for drinking water, possibly due to higher industrialization, agricultural, and urbanization rates. The organic pollutants reached critical concentrations (chemical oxygen demand up to 960.8 mg O2/L). Most of the studied samples contained acceptable concentrations of the major ions, (e.g., K+, Mg2+, HCO3-), for drinking and irrigation purposes. The statistical analyses (e.g., principal component analysis and cluster analysis) pointed out the control of water-rock interaction and anthropogenic activities in water composition. The hydrochemical data show that most of the water samples (96.4%) are Na2SO4 and NaHCO3 type, indicating its meteoric origin. The contamination with human and animal fecal substances, NO3¯, and NH4+ was identified in all samples, which pointed out the control of anthropogenic activities in water pollution. The photocatalytic technique efficiently eliminated more than 82-95% of organic contents and microbial pollutants, respectively, but it was inefficient in reducing heavy metal levels. According to the current results, shallow groundwater injection into the deep aquifer must be constrained and reusable after treatment. Finally, more studies are imperative to disseminate the applied treatment techniques to elude bacteria and organic pollutants from water at a pilot scale.


Subject(s)
Groundwater , Water Pollutants, Chemical , Egypt , Environmental Monitoring , Humans , Water Pollutants, Chemical/analysis , Water Quality
4.
Environ Sci Pollut Res Int ; 27(28): 35828-35836, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32601878

ABSTRACT

In this work, titanium dioxide nanoparticles (TiO2 NPs) and modified TiO2 NPs with silver (Ag) or platinum (Pt) dopant were developed through photodeposition method for the NOx conversion into nitric acid (HNO3) under visible light irradiation. The formed photocatalysts TiO2, Ag/TiO2, and Pt/TiO2 nanocomposites were characterized by utilizing TEM, SEM, energy-dispersive X-ray analysis (EDX), XRD, UV/visible diffuse reflectance spectroscopy (UV-Vis DRS), and FT-IR. It had been investigated that an enhancement within the conversion of NOx into HNO3 was increased from 34.3 to 78.3% for Ag/TiO2 and from 35.2 to 78.5% for Pt/TiO2 under visible light irradiation conditions at room temperature for less than 2 h. The photodegradation rate order of NOx under visible light irradiation is Pt/TiO2 ~ Ag/TiO2 > TiO2. A possible mechanism for the catalytic conversion of NOx gases has been proposed, which depends on the photogeneration of electrons and holes after the excitation of nanocatalysts under visible radiation that promoted superoxide and hydroxyl ions, which can depredate NOx gases. This approach of NOx photocatalytic conversion is characterized by its chemical stability, low cost, high efficiency, simple operation, and strong durability than traditional methods.


Subject(s)
Nanoparticles , Platinum , Catalysis , Light , Nitrogen Oxides , Silver , Spectroscopy, Fourier Transform Infrared , Titanium
5.
Int J Biol Macromol ; 121: 707-717, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30340001

ABSTRACT

We herein describe the synthesis of four Cs-PVC conjugates three of them were functionalized with benzothiazole (BTh) derivative as an antibacterial agent. Two of these BTh-functionalized conjugates, namely Cs2 and Cs3, comprise silver nanoparticles (AgNPs) and Ag/TiO2 NPs, respectively. The structures were characterized via FTIR spectroscopic analysis, morphological investigation such as scanning (SEM) and transmission (TEM) electron microscopy, and thermal gravimetric analysis (TGA). Spectral data confirmed the introduction of the BTh to the Cs backbone as well as the coupling between the two polymers. SEM data showed homogenous polymer surfaces with well-distributed Ag nanoparticles. The Ag contents in the prepared samples Cs2 and Cs3 were, respectively, 0.61 and 0.21%, however, TEM analysis showed that the sizes of AgNPs and Ag/TiO2 NPs were in the range of 3-7 nm and 15-22 nm for the prepared conjugates, respectively. The antibacterial activity of the synthesized conjugates was investigated against two Gram-negative (E. coli, and S. typhimurium) and two Gram-positive (S. aureus, and L. monocytogenes) bacteria. The antibacterial assay showed that all three Cs-PVC (Cs1, Cs2, and Cs3) conjugates modified with BTh exhibited excellent bacterial inhibition after 30, 60, and 120 min.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Metal Nanoparticles/chemistry , Polyvinyl Chloride/chemistry , Silver/chemistry , Anti-Bacterial Agents/chemical synthesis , Chemistry Techniques, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...