Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Res ; 181(6): 617-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24844649

ABSTRACT

Sixteen male Djungarian hamsters, serving as their own controls, were individually exposed to RF-EMF (900 MHz, GSM modulation) at 0 (sham), 0.08, 0.4 or 4 W/kg specific absorption rate (SAR) in specially constructed rectangular waveguides. Exposure duration was one week per condition, followed by one week without exposure. Once per day, the temperatures of the hamsters' back fur (a surrogate for skin temperature) and the cornea of the eye (a surrogate for body temperature), were measured by infrared thermography. Oxygen, carbon dioxide and humidity were measured continuously in the ambient and exhaled air. Food and water consumption, as well as body weight were recorded once per week. Only at the highest SAR level were the following effects observed: fur temperatures were elevated by approximately 0.5°C (P < 0.001), while the temperatures of the eyes' surface were not affected; food consumption was lowered (P < 0.05), while water consumption and body weight were not affected; the production of carbon dioxide was lowered during the day (P < 0.01) and unaffected during the night, while oxygen consumption levels remained unaffected and finally the respiratory quotient (carbon dioxide production divided by oxygen consumption) was lower during the day (P < 0.05) and also somewhat lower during the night (not significant). The results demonstrate the usefulness of our methods for experiments dealing with metabolic effects of RF-EMF exposure in rodents. They also confirm the assumption that even though the metabolism is reduced at high SAR levels, the body core temperature is being kept constant by the energy uptake from the RF-EMF exposure which is able to physiologically compensate for the reduced metabolism.


Subject(s)
Carbon Dioxide/metabolism , Electromagnetic Fields/adverse effects , Oxygen/metabolism , Animals , Cricetinae , Humidity , Male , Phodopus
2.
PLoS One ; 6(5): e19437, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21573218

ABSTRACT

Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.


Subject(s)
Electromagnetic Fields/adverse effects , Hippocampus/metabolism , Hippocampus/radiation effects , Neuronal Plasticity/radiation effects , Adrenocorticotropic Hormone/metabolism , Animals , Corticosterone/metabolism , Depression/chemically induced , Electrophysiology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...