Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 598
Filter
1.
J Food Sci Technol ; 61(8): 1457-1469, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966791

ABSTRACT

Nutrient-dense colostrum can be employed as a functional food ingredient. This work aimed to produce novel functional probiotic Cream cottage cheese (FPC) using probiotic (ABT) culture and bovine colostrum powder (BCP) at levels of 1, 2, and 3%. Physicochemical and functional properties (antioxidant activity, fatty acid profile, and antibacterial activity) were analyzed. The outcome revealed that hardness, cohesiveness, and gumminess were increased while springiness and chewiness were decreased for the treated cheeses. In FPC, medium-chain fatty acids were the predominant forms, followed by short- and long-chain fatty acids, polyunsaturated (PUFA), and small amounts of monounsaturated (MUFA). The antioxidant activity of all the cheese samples was significantly (P < 0.05) increased by increasing the quantity of colostrum powder and lengthening storage time. Color parameters were influenced by enrichment with BCP, whether in fresh or stored samples. With the addition of BCP, the growth of lactic acid bacteria and Bifidobacteria was enhanced, whereas that of pathogenic bacteria, mold and yeast, and coliform groups was inhibited. Cheeses fortified with 2% BCP had significantly higher score values than those in the other treatments. Therefore, it could be concluded that cottage cheese fortified with 2% BCP has high nutritional value and health benefits. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05910-0.

2.
Radiography (Lond) ; 30 Suppl 1: 62-73, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981301

ABSTRACT

INTRODUCTION: Previous research has delved into the attitudes and behaviors of diverse professions regarding environmental sustainability. However, there needs to be more research specifically targeting radiographers. This study aims to survey radiographers' perceptions, practices, and barriers to change concerning environmental sustainability in radiology. METHODS: Institutional ethical approval was obtained (IRB-COHS-FAC-110-2024) and data collection was conducted using Google Forms (Google Inc., Mountain View, CA). The survey targeted 104 practicing radiographers across several countries. Questions were structured around five domains to gather insights into demographics, training in global warming and climate change, perceptions of sustainability and climate change, sustainability barriers, and current radiology practices on sustainability. Data analysis utilized descriptive and d inferential statistics. RESULTS: One hundred and four radiographers completed the study. Females had a significantly higher attendance rate in environmental protection campaigns (P = 0.01). The majority of respondents (68%) believe in climate change's knowledge and impact on the natural world. Our survey findings demonstrate that 74% of respondents believe there's a need to improve sustainability practices. The most commonly used strategies to decrease energy consumption and emissions were low-energy lighting (60%), real-time power monitoring tools (41%), and energy-efficient heating systems (32%). A significant concern regarding sustainability emerges among respondents: time (50%) and lack of leadership (48%) are prevalent concerns among the identified barriers. CONCLUSION: Participants are recognising the importance of environmental sustainability in radiology, but lack of leadership, support, authority, and facility limitations hinder their adoption. IMPACT ON PRACTICE: Radiology must prioritize environmental sustainability by providing resources and training for radiographers and collaborating with healthcare professionals, policymakers, and environmental experts to develop comprehensive strategies for a sustainable healthcare system.

3.
Sci Rep ; 14(1): 14688, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38918489

ABSTRACT

In light of the multitude of olive trees cultivated and the lack of the genetic diversity of available genotypes to select varieties and lines that are characterized by high diversity and better performance under the corresponding conditions, A comparison analysis of the genotyping and morphological characteristics of eight olive cultivars growing in Saudi Arabia's Al-Jouf region was conducted and analyzed. Morpho-anatomical and chemical characteristics along with both inter-simple-sequence repeats (ISSRs) and start-codon-targeted (SCoT) markers were used to evaluate the genetic diversity among eight olive varieties in Al-Jouf, Saudi Arabia. Analyses of 27 morphological, chemical, and anatomical characteristics concluded the existence of genetic differences among the studied varieties. Moreover, six ISSR and eight SCoT primer combinations produced a total of 48 loci, of which 18 (10 ISSR and 8 SCoT) were polymorphic. The average polymorphism information content (PIC values of 0.48 and 0.44, respectively) and marker index (MI of 0.79 and 0.48, respectively) detected for ISSR and SCoT markers revealed the prevalence of high genetic diversity among the studied olive varieties. Based on chemical and anatomical characteristics and the selected molecular markers, the eight olive cultivars were grouped into two distinct clusters. Clusters in the adjacent joint dendrogram produced using ISSR, SCoT and combined data were similar, and grouped all individuals into two groups. However, the dendrogram generated on the basis of SCoT separated individuals into subgroups containing at least two varieties. The findings showed that both methods were effective in assessing diversity, and that SCoT markers can be used as a reliable and informative method for assessing genetic diversity and relationships among olive varieties and can serve as a complementary tool to provide a more complete understanding of the genetic diversity available in Olea europaea populations in Saudi Arabia.


Subject(s)
Genetic Variation , Microsatellite Repeats , Olea , Olea/genetics , Olea/classification , Olea/anatomy & histology , Saudi Arabia , Microsatellite Repeats/genetics , Genotype , Polymorphism, Genetic , Phylogeny , Genetic Markers
4.
Heliyon ; 10(11): e31086, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832266

ABSTRACT

The success of industrial operations depends on the effective identification, appraisal, and mitigation of possible hazards and associated environmental concerns. This report provides a complete review of environmental management techniques at the Sukari Gold Mine (SGM), located in the southeastern desert of Egypt. Extensive environmental measurements were taken to assess air and water quality, identify hazards, and analyze risks on the SGM premises. Air quality and noise intensity levels were measured at 39 places around the mine's working region. The findings found noncompliance with the Egyptian Environmental Law's (EEL4/94) noise exposure limitations, with the Power Generator House having the maximum noise levels at 107 dB. Remedial measures such as personal protective equipment (PPE) and exposure limit reduction strategies are being considered to address elevated noise levels. Measurements of particulate matter (PM10) and noxious gases (e.g., CO, SO2, NO2, HCN, and NH3) were conducted in workplace and ambient environments. Elevated PM10 concentrations were particularly concerning in underground regions, forcing the deployment of water depression techniques and improved PPE measures. While gas emissions from most activities remained under regulatory limits, select zones showed hydrogen cyanide (HCN) levels that exceeded permitted thresholds, necessitating specific control actions. Using hazard index (HI) and risk rating assessments, this study found different risk profiles across SGM's workplaces, focusing on high-risk regions for focused intervention. Additionally, a water assessment near a Tailing Storage Facility (TSF) was conducted to monitor the impact of mining activities on groundwater quality. The study revealed that groundwater in the region belongs to the Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 water classes, with potential degradation attributed to high mineralization processes induced by aquifer materials and seawater intrusion. The findings underscore the importance of ongoing monitoring, control measures, and implementation of programs to ensure environmental sustainability and minimize risks associated with mining activities in the Sukari Gold Mines. This research highlights the imperative of continuous monitoring, proactive control measures, and the implementation of environmental initiatives to ensure the sustainability of mining operations within the Sukari Gold Mines.

5.
Sci Rep ; 14(1): 13518, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866893

ABSTRACT

The Late Cretaceous was a time of high eustatic sea level that enabled extensive epicontinental seaways and carbonate platforms across the Tethyan Realm, providing favorable habitats for oyster communities to flourish. This study focuses on the Campanian Tethyan oysters from the North Eastern Desert of Egypt regarding taxonomy, palaeoecology, and palaeobiogeography. Three oyster species, Nicaisolopha nicaisei (Coquand, 1862), Pycnodonte (Phygraea) vesicularis (Lamarck, 1806), and Ambigostrea bretoni (Thomas and Peron, 1891), were identified from the Campanian succession in two studied sections. The sampled specimens of the genus Nicaisolopha have undergone a systematic palaeontological revision. As a result, N. tissoti (Thomas and Peron, 1891) is considered herein a junior synonym of N. nicaisei (Coquand, 1862). Palaeobiogeographically, the likely primary migration pattern of the studied oysters suggests an east-west trend along the Southern Tethys margin. All identified oysters in this study exhibit a Tethyan affinity and are primarily abundant in two main provinces: the Southern Tethys and the Western Tethys. The macrofaunal contents are categorized into two fossil associations: the Nicaisolopha nicaisei association of the middle-late Campanian age and the Pycnodonte vesicularis association of the late Campanian age. These macrofaunal associations indicate a deepening trend during the middle-late Campanian age, suggesting a transition from shallow inner neritic to middle neritic environments. Additionally, it is observed that Pycnodonteinae tend to grow larger under eutrophic conditions, low-energy environments, and nutrient-rich waters with high carbonate contents.


Subject(s)
Fossils , Ostreidae , Animals , Egypt , Ostreidae/anatomy & histology , Paleontology/methods , Ecosystem , Desert Climate
6.
Article in English | MEDLINE | ID: mdl-38698530

ABSTRACT

Condensation of 5-benzyl-3-hydrazino-1,2,4-triazino[5,6-b]indole with various sugar aldoses or ketoses gave the corresponding sugar hydrazones as single geometrical isomer or exist in E/Z tautomeric isomers. The hydrazones underwent heterocyclization with Fe(Ш)Cl3 to give the N2-adduct acyclo C-nucleosides: 3-(alditol-1yl)-10-benzyl-1,2,4-triazolo[4,3-b]1,2,4-triazino[5,6-b]indoles rather than the N4-adduct: 10-(alditol-1-yl)-3-benzyl-1,2,4-triazolo[3,4-c]1,2,4-triazino[5,6-b] indoles on the basis of chemical and UV spectral proofs. Conformational analysis of their polyacetates were studied. The new acyclo C-nucleosides were evaluated for antimicrobial activity.

7.
Foods ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38790832

ABSTRACT

Cereal grains and pulses are staple foods worldwide, being the primary supply of energy, protein, and fiber in human diets. The current practice of milling and fractionation yields large quantities of byproducts and waste, which are largely downgraded and end up as animal feeds or fertilizers. This adversely affects food security and the environment, and definitely implies an urgent need for a sustainable grain processing system to rectify the current issues, particularly the management of waste and excessive use of water and energy. The current review intends to discuss the limitations and flaws of the existing practice of grain milling and fractionation, along with potential solutions to make it more sustainable, with an emphasis on wheat and peas as common fractionation crops. This review discusses a proposed sustainable grain processing system for the fractionation of wheat or peas into flour, protein, starch, and value-added components. The proposed system is a hybrid model that combines dry and wet fractionation processes in conjunction with the implementation of three principles, namely, integration, recycling, and upcycling, to improve component separation efficiency and value addition and minimize grain milling waste. The three principles are critical in making grain processing more efficient in terms of the management of waste and resources. Overall, this review provides potential solutions for how to make the grain processing system more sustainable.

8.
Biol Pharm Bull ; 47(5): 1008-1020, 2024.
Article in English | MEDLINE | ID: mdl-38797693

ABSTRACT

The dipeptidyl peptidase-4 (DPP-4) inhibitors, a novel anti-diabetic medication family, are renoprotective in diabetes, but a comparable benefit in chronic non-diabetic kidney diseases is still under investigation. This study aimed to elucidate the molecular mechanisms of linagliptin's (Lina) protective role in a rat model of chronic kidney injury caused by tacrolimus (TAC) independent of blood glucose levels. Thirty-two adult male Sprague Dawley rats were equally randomized into four groups and treated daily for 28 d as follows: The control group; received olive oil (1 mL/kg/d, subcutaneously), group 2; received Lina (5 mg/kg/d, orally), group 3; received TAC (1.5 mg/kg/d, subcutaneously), group 4; received TAC plus Lina concomitantly in doses as the same previous groups. Blood and urine samples were collected to investigate renal function indices and tubular injury markers. Additionally, signaling molecules, epithelial-mesenchymal transition (EMT), and fibrotic-related proteins in kidney tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis, immunohistochemical and histological examinations. Tacrolimus markedly induced renal injury and fibrosis as indicated by renal dysfunction, histological damage, and deposition of extracellular matrix (ECM) proteins. It also increased transforming growth factor ß1 (TGF-ß1), Smad4, p-extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P38/P38 mitogen-activated protein kinase (MAPK) protein levels. These alterations were markedly attenuated by the Lina administration. Moreover, Lina significantly inhibited EMT, evidenced by inhibiting Vimentin and α-smooth muscle actin (α-SMA) and elevating E-cadherin. Furthermore, Lina diminished hypoxia-related protein levels with a subsequent reduction in Snail and Twist expressions. We concluded that Lina may protect against TAC-induced interstitial fibrosis by modulating TGF-ß1 mediated EMT via Smad-dependent and independent signaling pathways.


Subject(s)
Epithelial-Mesenchymal Transition , Fibrosis , Linagliptin , Rats, Sprague-Dawley , Tacrolimus , Transforming Growth Factor beta1 , Animals , Linagliptin/pharmacology , Linagliptin/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Male , Tacrolimus/pharmacology , Transforming Growth Factor beta1/metabolism , Signal Transduction/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Rats , Smad Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Immunosuppressive Agents/pharmacology
9.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704766

ABSTRACT

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Subject(s)
Acute Kidney Injury , Kidney , Linagliptin , NF-E2-Related Factor 2 , Oxidative Stress , Animals , Male , Rats , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Connective Tissue Growth Factor/drug effects , Connective Tissue Growth Factor/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunosuppressive Agents/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Linagliptin/pharmacology , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Plasminogen Activator Inhibitor 1/drug effects , Plasminogen Activator Inhibitor 1/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Tacrolimus/pharmacology , Tacrolimus/toxicity , Heme Oxygenase-1/drug effects , Heme Oxygenase-1/metabolism
10.
A A Pract ; 18(4): e01778, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38572887

ABSTRACT

Even though epidural blood patch (EBP) is thought to be the definitive treatment for severe cases of postdural puncture headache (PDPH), it may be accompanied by complications like adhesion arachnoiditis, and cauda equina syndrome, especially if the injection is repeated. The sphenopalatine ganglion (SPG) block is a new minimally invasive technique for the treatment of PDPH, with variable results according to the clinical situation and deployed approach. We describe a case of PDPH resistant to EBP in which we successfully managed symptoms using ultrasound-guided suprazygomatic SPG block to deliver local anesthetic directly into pterygopalatine fossa, thus avoiding a second EBP.


Subject(s)
Post-Dural Puncture Headache , Sphenopalatine Ganglion Block , Humans , Post-Dural Puncture Headache/therapy , Post-Dural Puncture Headache/etiology , Blood Patch, Epidural/methods , Sphenopalatine Ganglion Block/methods , Anesthetics, Local , Ultrasonography, Interventional/adverse effects
11.
Environ Sci Pollut Res Int ; 31(18): 27465-27484, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512572

ABSTRACT

Microorganisms are cost-effective and eco-friendly alternative methods for removing heavy metals (HM) from contaminated agricultural soils. Therefore, this study aims to identify and characterize HM-tolerant (HMT) plant growth-promoting rhizobacteria (PGPR) isolated from industry-contaminated soils to determine their impact as bioremediators on HM-stressed pepper plants. Four isolates [Pseudomonas azotoformans (Pa), Serratia rubidaea (Sr), Paenibacillus pabuli (Pp) and Bacillus velezensis (Bv)] were identified based on their remarkable levels of HM tolerance in vitro. Field studies were conducted to evaluate the growth promotion and tolerance to HM toxicity of pepper plants grown in HM-polluted soils. Plants exposed to HM stress showed improved growth, physio-biochemistry, and antioxidant defense system components when treated with any of the individual isolates, in contrast to the control group that did not receive PGPR. The combined treatment of the tested HMT PGPR was, however, relatively superior to other treatments. Compared to no or single PGPR treatment, the consortia (Pa+Sr+Pp+Bv) increased the photosynthetic pigment contents, relative water content, and membrane stability index but lowered the electrolyte leakage and contents of malondialdehyde and hydrogen peroxide by suppressing the (non) enzymatic antioxidants in plant tissues. In pepper, Cd, Cu, Pb, and Ni contents decreased by 88.0-88.5, 63.8-66.5, 66.2-67.0, and 90.2-90.9% in leaves, and 87.2-88.1, 69.4-70.0%, 80.0-81.3, and 92.3%% in fruits, respectively. Thus, these PGPR are highly effective at immobilizing HM and reducing translocation in planta. These findings indicate that the application of HMT PGPR could be a promising "bioremediation" strategy to enhance growth and productivity of crops cultivated in soils contaminated with HM for sustainable agricultural practices.


Subject(s)
Capsicum , Metals, Heavy , Soil Pollutants , Capsicum/microbiology , Metals, Heavy/toxicity , Soil Pollutants/toxicity , Biodegradation, Environmental , Bacillus , Soil Microbiology
12.
Sci Total Environ ; 920: 171006, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369137

ABSTRACT

Understanding the patterns and controls regulating nitrogen (N) transformation and its response to N enrichment is critical to re-evaluating soil N limitation or availability and its environmental consequences. Nevertheless, how climatic conditions affect nitrate dynamics and the response of gross N cycling rates to N enrichment in forest soils is still only rudimentarily known. Through collecting and analyzing 4426-single and 769-paired observations from 231 15N labeling studies, we found that nitrification capacity [the ratio of gross autotrophic nitrification (GAN) to gross N mineralization (GNM)] was significantly lower in tropical/subtropical (19%) than in temperate (68%) forest soils, mainly due to the higher GNM and lower GAN in tropical/subtropical regions resulting from low C/N ratio and high precipitation, respectively. However, nitrate retention capacity [the ratio of dissimilatory nitrate reduction to ammonium (DNRA) plus gross nitrate immobilization (INO3) to gross nitrification] was significantly higher in tropical/subtropical (86%) than in temperate (54%) forest soils, mainly due to the higher precipitation and GNM of tropical/subtropical regions, which stimulated DNRA and INO3. As a result, the ratio of GAN to ammonium immobilization (INH4) was significantly higher in temperate than in tropical/subtropical soils. Climatic rather than edaphic factors control heterotrophic nitrification rate (GHN) in forest soils. GHN significantly increased with increasing temperature in temperate regions and with decreasing precipitation in tropical/subtropical regions. In temperate forest soils, gross N transformation rates were insensitive to N enrichment. In tropical/subtropical forests, however, N enrichment significantly stimulated GNM, GAN and GAN to INH4 ratio, but inhibited INH4 and INO3 due to reduced microbial biomass and pH. We propose that temperate forest soils have higher nitrification capacity and lower nitrate retention capacity, implying a higher potential risk of N losses. However, tropical/subtropical forest systems shift from a conservative to a leaky N-cycling system in response to N enrichment.


Subject(s)
Ammonium Compounds , Nitrogen , Nitrogen/analysis , Nitrates/analysis , Soil , Forests
13.
J Econ Entomol ; 117(2): 618-628, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38377139

ABSTRACT

Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) is a major economic pest attacking a variety of crops in Egypt and other Mediterranean countries. S. littoralis has developed resistance to both traditional and novel insecticides. The current study investigated S. littoralis resistance to indoxacarb regarding inheritance mode, realized heritability (h2), and fitness costs. An indoxacarb-resistant strain (Indoxa-SEL) was obtained by selecting a field strain with indoxacarb. Indoxa-SEL strain outperformed the susceptible one (Indoxa-S) by 29.77-fold after 16 consecutive generations of selection. Based on the LC50 values of the progenies of reciprocal crosses F1 (R♂ × S♀) and F1' (R♀ × S♂), S. littoralis resistance to indoxacarb was found to be autosomal and partially recessive. Chi-square tests for goodness-of-fit between observed and expected mortalities of self-bred F1 and resistant strain reciprocal crosses revealed that the resistance was controlled by multiple genes. The resistant strain had a relative fitness of 0.80, with significantly increased total preovipositional period of females, egg, larvae, pupae, preadult, adult, and total longevity period. The estimated realized heritability value in the Indoxa-SEL strain was 0.21. The current study will contribute to sustaining indoxacarb efficacy and designing effective resistance management programs against S. littoralis.


Subject(s)
Insecticides , Moths , Female , Animals , Spodoptera/genetics , Insecticide Resistance/genetics , Moths/genetics , Oxazines/pharmacology , Larva/genetics , Insecticides/pharmacology
14.
Biol Pharm Bull ; 47(1): 303-310, 2024.
Article in English | MEDLINE | ID: mdl-38281774

ABSTRACT

Methotrexate (MTX) is an indispensable drug used for the treatment of many autoimmune and cancerous diseases. However, its clinical use is associated with serious side effects, such as lung fibrosis. The main objective of this study is to test the hypothesis that hydroxytyrosol (HT) can mitigate MTX-induced lung fibrosis in rats while synergizing MTX anticancer effects. Pulmonary fibrosis was induced in the rats using MTX (14 mg/kg/week, per os (p.o.)). The rats were treated with or without HT (10, 20, and 40 mg/kg/d p.o.) or dexamethasone (DEX; 0.5 mg/kg/d, intraperitoneally (i.p.)) for two weeks concomitantly with MTX. Transforming growth factor beta 1 (TGF-ß1), interleukin-4 (IL-4), thromboxane A2 (TXA2), vascular endothelial growth factor (VEGF), 8-hydroxy-2-deoxy-guanosine (8-OHdG), tissue factor (TF) and fibrin were assessed using enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and RT-PCR. Pulmonary fibrosis was manifested by an excessive extracellular matrix (ECM) deposition and a marked increase in TGF-ß1 and IL-4 in lung tissues. Furthermore, cotreatment with HT or dexamethasone (DEX) significantly attenuated MTX-induced ECM deposition, TGF-ß1, and IL-4 expression. Similarly, HT or DEX notably reduced hydroxyproline contents, TXA2, fibrin, and TF expression in lung tissues. Moreover, using HT or DEX downregulated the gene expression of TF. A significant decrease in lung contents of VEGF, IL-8, and 8-OHdG was also observed in HT + MTX- or DEX + MTX -treated animals in a dose-dependent manner. Collectively, the results of our study suggest that HT might represent a potential protective agent against MTX-induced pulmonary fibrosis.


Subject(s)
Methotrexate , Phenylethyl Alcohol , Pulmonary Fibrosis , Animals , Rats , Dexamethasone/pharmacology , Fibrin/metabolism , Interleukin-4/metabolism , Lung/pathology , Methotrexate/adverse effects , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/prevention & control , Thromboplastin/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
15.
Can J Physiol Pharmacol ; 102(1): 55-68, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37818839

ABSTRACT

This study concerned with assessing the effect of restoring p53 using PRIMA-1 on the anti-cancer activity of olaparib against TP53-mutant triple negative breast cancer (TNBC) cells and exploring the optimum synergistic concentrations and the underlying mechanism. Human BC cell lines, MDA-MB-231 with mutated TP53 gene, and MCF-7 with wild-type TP53 gene were treated with olaparib and/or PRIMA-1. The IC50 value for olaparib was significantly decreased by PRIMA-1 in MDA-MB-231 cells compared to MCF-7 cells. Contrary to MCF-7 cells, co-treatment with olaparib and PRIMA-1 had a synergistic anti-proliferative effect in MDA-MB-231 at all tested concentrations with the best synergistic combination at 45 and 8.5 µM, respectively, and furthermore PRIMA-1 enhanced olaparib-induced apoptosis. This synergistic apoptotic effect was associated with a significant boost in mRNA expression of TP53 gene, cell cycle arrest at G2/M phase, modulation of BRCA-1, BAX and Bcl2 proteins expressions, and induction of active caspase-3. These results present a clue for the utility of combined olaparib and PRIMA-1 in treatment of TP53-mutant TNBC invitro. PRIMA-1 triggers olaparib-induced MDA-MB-231 cell death in a synergistic manner via restoring TP53, decreasing BRCA-1 expression, cell cycle arrest, and enhancement of apoptosis via p53/BAX/Bcl2/caspase 3 pathway.


Subject(s)
Triple Negative Breast Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Genes, p53 , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , bcl-2-Associated X Protein/metabolism , Cell Line, Tumor , Apoptosis , Cell Death , Cell Division , Cell Cycle , Cell Proliferation
16.
Sci Rep ; 13(1): 21796, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066104

ABSTRACT

Vehicular Adhoc Networks (VANETs) is an emerging field that employs a wireless local area network (WLAN) characterized by an ad-hoc topology. Vehicular Ad Hoc Networks (VANETs) comprise diverse entities that are integrated to establish effective communication among themselves and with other associated services. Vehicular Ad Hoc Networks (VANETs) commonly encounter a range of obstacles, such as routing complexities and excessive control overhead. Nevertheless, the majority of these attempts were unsuccessful in delivering an integrated approach to address the challenges related to both routing and minimizing control overheads. The present study introduces an Improved Deep Reinforcement Learning (IDRL) approach for routing, with the aim of reducing the augmented control overhead. The IDRL routing technique that has been proposed aims to optimize the routing path while simultaneously reducing the convergence time in the context of dynamic vehicle density. The IDRL effectively monitors, analyzes, and predicts routing behavior by leveraging transmission capacity and vehicle data. As a result, the reduction of transmission delay is achieved by utilizing adjacent vehicles for the transportation of packets through Vehicle-to-Infrastructure (V2I) communication. The simulation outcomes were executed to assess the resilience and scalability of the model in delivering efficient routing and mitigating the amplified overheads concurrently. The method under consideration demonstrates a high level of efficacy in transmitting messages that are safeguarded through the utilization of vehicle-to-infrastructure (V2I) communication. The simulation results indicate that the IDRL routing approach, as proposed, presents a decrease in latency, an increase in packet delivery ratio, and an improvement in data reliability in comparison to other routing techniques currently available.

17.
Biol Pharm Bull ; 46(11): 1558-1568, 2023.
Article in English | MEDLINE | ID: mdl-37914358

ABSTRACT

This study was designed to evaluate the potential protective impact of estrogen and estrogen receptor against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The levels of liver injury serum biomarkers, liver content of interleukin-6 (IL-6), relative liver weight and distortion of liver histological pictures were significantly increased in ovariectomized (OVX) rats and SHAM rats that received DEN alone and were further exaggerated when DEN was combined with fulvestrant (F) compared to non-DEN treated rats. The OVX rats showed higher insults than SHAM rats. The tapering impact on these parameters was clear in OVX rats that received estradiol benzoate (EB), silymarin (S) or orlistat (ORS). The immunohistochemistry and/or Western blot analysis of liver tissues showed a prominent increase in fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) expressions in OVX and SHAM rats who received DEN and/ or F compared to SHAM rats. In contrast to S, treatment of OVX rats with EB mitigated DEN-induced expression of FASN and CD36 in liver tissue, while ORS improved DEN-induced expression of FASN. In conclusion, the protective effect against HCC was mediated via estrogen receptor alpha (ER-α) which abrogates its downstream genes involved in lipid metabolism namely FASN and CD36 depriving the tumor from survival vital energy source. In addition, ORS induced similar mitigating effect against DEN-induced HCC which could be attributed to FASN inhibition and anti-inflammatory effect. Furthermore, S alleviated DEN-induced HCC, independent of its estrogenic effect.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Female , Rats , Carcinoma, Hepatocellular/metabolism , Diethylnitrosamine/toxicity , Diethylnitrosamine/metabolism , Estrogens/metabolism , Fatty Acid Synthases/metabolism , Fatty Acid Synthases/pharmacology , Interleukin-6/metabolism , Liver/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/drug therapy , Liver Neoplasms/prevention & control , Receptors, Estrogen/metabolism
18.
Nanoscale Adv ; 5(20): 5627-5640, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37822899

ABSTRACT

Objective: hybrid nanofluids have superior thermal efficiency and physical durability in contrast to regular nanofluids. The stagnation point flow of MHD micropolar hybrid nanofluids over a deformable sheet with viscous dissipation is investigated. Methodology: the controlling partial differential equations are converted to nonlinear ordinary differential equations using the transmuted similarity, and are subsequently solved using the bvp4c solver in MATLAB. The hybrid nanofluids consist of aluminum and copper nanoparticles, dispersed in a base fluid of water. Results: multiple solutions are obtained in the given problem for the case of shrinking as well as for the stretching sheet due to the variation in several influential parameters. Non-unique solutions, generally, exist for the case of shrinking sheets. In addition, the first branch solution is physically stable and acceptable according to the stability analysis. The friction factor is higher for the branch of the first solution and lower in the second branch due to the higher magnetic parameters, while the opposite behavior is seen in the case of the local heat transfer rate. Originality: the novelty of this model is that it finds multiple solutions in the presence of Cu and Al2O3 nanoparticles and also performs the stability analysis. In general, non-unique solutions exist for the phenomenon of shrinking sheets.

19.
Plants (Basel) ; 12(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836175

ABSTRACT

Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH- occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•-), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•-, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants.

20.
Sci Rep ; 13(1): 18315, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880216

ABSTRACT

Silicon (Si) and/or proline (Pro) are natural supplements that are considered to induce plants' stress tolerance against various abiotic stresses. Sweet corn (Zea mays L. saccharata) production is severely afflicted by salinity stress. Therefore, two field tests were conducted to evaluate the potential effects of Si and/or Pro (6mM) used as seed soaking (SS) and/or foliar spray (FS) on Sweet corn plant growth and yield, physio-biochemical attributes, and antioxidant defense systems grown in a saline (EC = 7.14dS m-1) soil. The Si and/or Pro significantly increased growth and yield, photosynthetic pigments, free proline, total soluble sugars (TSS), K+/Na+ratios, relative water content (RWC), membrane stability index (MSI), α-Tocopherol (α-TOC), Ascorbate (AsA), glutathione (GSH), enzymatic antioxidants activities and other anatomical features as compared to controls. In contrast, electrolytes, such as SS and/or FS under salt stress compared to controls (SS and FS using tap water) were significantly decreased. The best results were obtained when SS was combined with FS via Si or Pro. These alterations are brought about by the exogenous application of Si and/or Pro rendering these elements potentially useful in aiding sweet corn plants to acclimate successfully to saline soil.


Subject(s)
Antioxidants , Zea mays , Antioxidants/pharmacology , Silicon/pharmacology , Proline/pharmacology , Salt Stress , Glutathione , Water , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...