Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Caries Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815561

ABSTRACT

INTRODUCTION: Cariogenic bacterial acids dissolve the inorganic elements in dentine, leaving the dentine matrix exposed. Host-derived matrix metalloproteinases (MMPs) play an essential role in caries progression as they are significant regulators of extracellular matrix turnover and can degrade exposed collagen. This paper investigates the expression of MMP2 and MMP9 across various stages of caries in primary human teeth and relate this with a diagnosis recorded by The International Caries Detection and Assessment System (ICDAS). METHODS: Twenty-four sections (150um in thickness) from extracted teeth, clinically diagnosed using ICDAS, were immunohistochemically treated with monoclonal anti-MMP2 and anti-MMP9 antibodies. Positive staining was visualised by immunofluorescence using a VectorFluor Duet Double Labeling Kit. Images from triplicate samples for each ICDAS score were analysed using ImageJ software. Collagen degradation in caries lesions was detected using a hydroxyproline assay. RESULTS: MMPs were weakly detected in caries with ICDAS 1-2 scores, and an insignificant increase was detected in ICDAS 3. However, a significant increase in MMP expression was seen in caries with an ICDAS score of 4-6. There was a strong positive correlation between the ICDAS score and MMP2, [r(6) = .86, p = .002] and between ICDAS and MMP9, [r(6) = .82, p = .004]. Data were analysed using two-way ANOVA followed by Tukey multiple comparison test (*p < 0.05). CONCLUSION: The use of ICDAS to assess the severity of caries lesions and how this correlates with the presence of MMP in these lesions validates the modern approach to caries management with a minimally invasive concept.

2.
Caries Res ; 55(5): 521-533, 2021.
Article in English | MEDLINE | ID: mdl-34348278

ABSTRACT

There is a requirement to ensure that in vitro studies that use demineralized human dentine models are reliable and clinically relevant. The literature reports several strategies for these studies with a lack of consensus on the mode of action of the different demineralizing acids on human dentine. This in vitro study aims to characterize the effect of clinically relevant acids on human dentine, using standardized substrates and complementary analytical techniques. The study focuses on an analysis of the mineral content and the integrity of the collagen following partial demineralization. Samples of human dentine were exposed to a range of acids commonly encountered in the oral cavity. Characterization of the mineral content used Vickers micro-hardness, energy-dispersive spectroscopy, and X-ray fluorescence. Characterization of the collagen integrity was undertaken by means of scanning electron microscopy and hydroxyproline assay. The following conclusions were reached: (i) each demineralizing agent tested had a unique effect on the mineral levels; (ii) chelating agents, strong acids, and weak acids affect the mineral and organic phases of dentine in significantly different ways with no correlation between them; and (iii) the demineralizing agents caused some degree of collagen denaturation, citric acid causing the most damage. Overall, there is no clear link between the type of demineralizing agent and the effect on the organic and inorganic dentine. The choice of demineralizing agent should be aligned to the experiment objectives so that the selected dentine (caries or erosion) model is fit for the purpose.


Subject(s)
Dental Caries , Dentin , Collagen , Humans , Hydroxyproline , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...