Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(22): 23512-23522, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38854541

ABSTRACT

The development of the membrane surface and cross-sectional morphology is pivotal in influencing the effectiveness of membrane separation. In this study, evaluating the separation rates between the solvent and nonsolvent in the casting solution and the related thermodynamic alteration analysis were illustrated. Additionally, the rheological variations were determined by measuring the viscosity of the resulting dope solutions, providing an initial estimation of the phase separation kinetics. Asymmetric polystyrene (PS)/slag composite membrane, incorporating slag waste as an inorganic additive, was developed. Dimethylformamide (DMF) was utilized as the solvent, and sodium dodecyl sulfate (SDS) was employed as an anionic surfactant to facilitate the casting process. A tertiary system diagram approach involving waste PS, DMF, and water introducing slag as an inorganic additive and SDS as a surfactant was attained to promote the separation of the solvent and nonsolvent in the casting solution. These novel composite mixtures exhibited increased thermodynamic instability within the coagulation bath, facilitating the rapid separation of solid membranes from the dope solutions and forming composite membranes with significantly increased porosity (exceeding a 20% increase) compared to that of plain waste materials. The composite membrane characteristics were assessed with the widely used poly(vinylidene difluoride) (PVDF) membrane, showing comparative features and performance when tested on a membrane distillation (MD) cell; it gave a flux of 1 kg/m2·h. These promising characteristics positioned this novel PS/slag composite membrane as a candidate for various water-related applications.

2.
Sci Rep ; 12(1): 18278, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36316376

ABSTRACT

The most significant issue affecting the electric efficiency of solar panels is overheating. Concentration photovoltaic (CPV) modules work by converting approximately 80% of sunlight to heat; this may exceed the cell operating temperature limits. Therefore, thermal management is the best choice for keeping such panels working under specified conditions. Prior to producing an actual solar indoor unit, the current research primarily focuses on optimizing the heat sink dimensions that affect the cooling performance of the solar panel. Two parametric studies were employed to optimize the microchannel heat sink design. First, a two-dimensional numerical study was implemented to optimize the best channel height for more uniform flow inside a double-layer microchannel heat sink (DL-MCHS); the width of channels was kept as a constant value. Second, a three-dimensional conjugate heat transfer model for fluid flow in the optimized heat sink was used to optimize the inlet/outlet header length. To evaluate the overall CPV performance, a further numerical case study was carried out for the optimized designs at a wide range of inlet mass flow rates and steady-state heat flux. The findings indicated that a channel height of 0.5 mm and a header length of 20 mm were the best design points for the suggested heat sink. To assess the effectiveness of a solar/thermal module, the selected design points were applied to a 3D model. The maximum electricity efficiency measured was 17.45%, nearly 40% greater than the typical CPV/T system.

SELECTION OF CITATIONS
SEARCH DETAIL
...