Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Org Chem ; 88(15): 11372-11376, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37463857

ABSTRACT

Herein, we report the synthesis of aryl derivatives of ketamine and of ketamine's major metabolites hydroxynorketamine (HNK), norketamine (NK), and dehydronorketamine (DHNK) via a microwave-assisted Diels-Alder reaction to form the substituted cyclohexane core structure. Starting with aryl acrylic esters as dienophiles and siloxybutadienes as diene counterparts, a wide range of substituted arylcyclohexylamines was obtained after several modification steps of the initial Diels-Alder products [El Sheikh, S.; Weber, H.; Kortenbrede, L.; Drouvé, N. A broadly applicable Diels-Alder based Synthesis of Ketamine related Arylcyclohexylamines. ChemRxiv 2022, 10.26434/chemrxiv- 2022-xf1l9].

2.
Front Neurosci ; 17: 1085282, 2023.
Article in English | MEDLINE | ID: mdl-36968488

ABSTRACT

During spaceflight, humans experience a variety of physiological changes due to deviations from familiar earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in mental disorders and altered neuronal transmission may also lead to diminished human performance in space. Thus, understanding the influence of altered gravity at the cellular and network level is of high importance. Previous electrophysiological experiments using patch clamp techniques and calcium indicators have shown that neuronal activity is influenced by altered gravity. By using multi-electrode array (MEA) technology, we advanced the electrophysiological investigation covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. We continuously recorded in real-time the spontaneous activity of human induced pluripotent stem cell (hiPSC)-derived neural networks in vitro. The MEA device was integrated into a custom-built environmental chamber to expose the system with neuronal cultures to up to 6 g of hypergravity on the Short-Arm Human Centrifuge at the DLR Cologne, Germany. The flexibility of the experimental hardware set-up facilitated additional MEA electrophysiology experiments under 4.7 s of high-quality microgravity (10-6 to 10-5 g) in the Bremen drop tower, Germany. Hypergravity led to significant changes in activity. During the microgravity phase, the mean action potential frequency across the neural networks was significantly enhanced, whereas different subgroups of neurons showed distinct behaviors, such as increased or decreased firing activity. Our data clearly demonstrate that gravity as an environmental stimulus triggers changes in neuronal activity. Neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or de-loading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity. Our approach provided the basis for the identification of responsible mechanisms and the development of countermeasures with potential implications on manned space missions.

3.
J Med Chem ; 64(9): 5323-5344, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33872507

ABSTRACT

Herein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress. The first generation of sGC activators like cinaciguat or ataciguat exhibited limitations and were discontinued. We overcame limitations of first-generation sGC activators and identified a new chemical class via high-throughput screening. The investigation of the structure-activity relationship allowed to improve potency and multiple solubility, permeability, metabolism, and drug-drug interactions parameters. This program resulted in the discovery of the oral sGC activator runcaciguat (compound 45, BAY 1101042). Runcaciguat is currently investigated in clinical phase 2 studies for the treatment of patients with chronic kidney disease and nonproliferative diabetic retinopathy.


Subject(s)
Drug Design , Enzyme Activators/chemistry , Soluble Guanylyl Cyclase/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Cytochrome P-450 CYP3A/chemistry , Cytochrome P-450 CYP3A/metabolism , Dogs , Enzyme Activators/metabolism , Enzyme Activators/pharmacology , Enzyme Activators/therapeutic use , Half-Life , Heart Rate/drug effects , Hemodynamics/drug effects , Hypertension/drug therapy , Hypertension/pathology , Molecular Dynamics Simulation , Rats , Rats, Inbred SHR , Solubility , Soluble Guanylyl Cyclase/metabolism , Structure-Activity Relationship
4.
Mol Cancer Ther ; 16(5): 893-904, 2017 05.
Article in English | MEDLINE | ID: mdl-28292941

ABSTRACT

C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.4A expression is scarce in normal tissues, presenting an opportunity to selectively treat cancers with a C4.4A-directed antibody-drug conjugate (ADC). We have generated BAY 1129980 (C4.4A-ADC), an ADC consisting of a fully human C4.4A-targeting mAb conjugated to a novel, highly potent derivative of the microtubule-disrupting cytotoxic drug auristatin via a noncleavable alkyl hydrazide linker. In vitro, C4.4A-ADC demonstrated potent antiproliferative efficacy in cell lines endogenously expressing C4.4A and inhibited proliferation of C4.4A-transfected A549 lung cancer cells showing selectivity compared with a nontargeted control ADC. In vivo, C4.4A-ADC was efficacious in human NSCLC cell line (NCI-H292 and NCI-H322) and patient-derived xenograft (PDX) models (Lu7064, Lu7126, Lu7433, and Lu7466). C4.4A expression level correlated with in vivo efficacy, the most responsive being the models with C4.4A expression in over 50% of the cells. In the NCI-H292 NSCLC model, C4.4A-ADC demonstrated equal or superior efficacy compared to cisplatin, paclitaxel, and vinorelbine. Furthermore, an additive antitumor efficacy in combination with cisplatin was observed. Finally, a repeated dosing with C4.4A-ADC was well tolerated without changing the sensitivity to the treatment. Taken together, C4.4A-ADC is a promising therapeutic candidate for the treatment of NSCLC and other cancers expressing C4.4A. A phase I study (NCT02134197) with the C4.4A-ADC BAY 1129980 is currently ongoing. Mol Cancer Ther; 16(5); 893-904. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Adhesion Molecules/immunology , Immunoconjugates/administration & dosage , Aminobenzoates/chemistry , Aminobenzoates/immunology , Animals , Antibodies, Monoclonal/immunology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Cell Adhesion Molecules/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/administration & dosage , Cisplatin/immunology , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/immunology , Humans , Immunoconjugates/chemistry , Immunoconjugates/immunology , Mice , Oligopeptides/chemistry , Oligopeptides/immunology , Paclitaxel/administration & dosage , Paclitaxel/immunology , Vinblastine/administration & dosage , Vinblastine/analogs & derivatives , Vinblastine/immunology , Vinorelbine , Xenograft Model Antitumor Assays
5.
ChemMedChem ; 4(12): 2054-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19816894

ABSTRACT

Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Peptides/chemical synthesis , Amino Acids/chemistry , Bacterial Proteins/metabolism , Endopeptidases/metabolism , Models, Molecular , Molecular Structure , Peptides/pharmacology , Protein Binding
6.
Curr Opin Drug Discov Devel ; 7(6): 882-95, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15595447

ABSTRACT

In contrast to commonly accepted routine protocols for chemical synthesis, the reactions of lithioarenes, generated either by deprotonation or halogen-lithium exchange, need not necessarily be conducted in a stepwise fashion. As this review will demonstrate, the 'in situ-quench protocol provides a powerful alternative to stepwise construction in many cases. The operational simplicity of this methodology suggests interesting applications both for library syntheses and microreactor technology.


Subject(s)
Halogens/chemistry , Lithium/chemistry , Organic Chemicals/chemical synthesis , Boron/chemistry , Boron Compounds/chemistry , Indicators and Reagents
SELECTION OF CITATIONS
SEARCH DETAIL
...