Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1220002, 2023.
Article in English | MEDLINE | ID: mdl-37701781

ABSTRACT

Fibroblast growth factor (FGF) signaling is necessary for proper lung branching morphogenesis, alveolarization, and vascular development. Dysregulation of FGF activity has been implicated in various lung diseases. Recently, we showed that FGF18 promotes human lung branching morphogenesis by regulating mesenchymal progenitor cells. However, the underlying mechanisms remain unclear. Thus, we aimed to determine the role of FGF18 and its receptors (FGFR) in regulating mesenchymal cell proliferation, migration, and differentiation from pseudoglandular to canalicular stage. We performed siRNA assays to identify the specific FGFR(s) associated with FGF18-induced biological processes. We found that FGF18 increased proliferation and migration in human fetal lung fibroblasts (HFLF) from both stages. FGFR2/FGFR4 played a significant role in pseudoglandular stage. HFLF proliferation, while FGFR3/FGFR4 were involved in canalicular stage. FGF18 enhanced HFLF migration through FGFR2 and FGFR4 in pseudoglandular and canalicular stage, respectively. Finally, we provide evidence that FGF18 treatment leads to reduced expression of myofibroblast markers (ACTA2 and COL1A1) and increased expression of lipofibroblast markers (ADRP and PPARγ) in both stages HFLF. However, the specific FGF18/FGFR complex involved in this process varies depending on the stage. Our findings suggest that in context of human lung development, FGF18 tends to associate with distinct FGFRs to initiate specific biological processes on mesenchymal cells.

2.
Foods ; 8(3)2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30841518

ABSTRACT

BACKGROUND: Origanum syriacum L. is an aromatic plant growing wild in Lebanon. This species is highly used in Lebanese traditional medicine and is a staple food in Lebanese gastronomy. Due to the over-harvesting, this species has become a cultivated crop rather than being collected from the wild. This study aims to evaluate the chemical polymorphism according to soil type. METHODS: Plant samples were cultivated in different soil types including manure, potting mix, professional agriculture mixture, vegetable compost, nursery soils, and natural agricultural soil inoculated with arbuscular mycorrhizal fungi. After 16 weeks of culture, fresh shoot biomass was measured. Root colonization rate was evaluated and foliar biomasses were used for essential oil (EO) extraction. EO yield was calculated and the identification of the main chemical compounds of EO samples was performed by gas chromatography (GC) and gas chromatography⁻mass spectrometry (GC/MS). RESULTS: Our findings revealed that the soil type affects the O. syriacum chemotype. Indeed, the EO samples could be divided into two groups: thymol chemotype group including manure and vegetable compost soils and non-sterilized non-inoculated EO samples, and the thymol/carvacrol chemotype including potting mix, professional agriculture mixture, nursery mixture, sterilized non-inoculated, non-sterilized inoculated, and sterilized inoculated EO samples. These results showed that manure and vegetable compost soils promoted thymol synthesis, whereas potting mix, professional agriculture mixture, and nursery mixture soils were thymol/carvacrol chemotype. Moreover, mycorrhizal inoculation increased carvacrol and reduced thymol productions in comparison to non-inoculated conditions. Additionally, mycorrhizal inoculation showed significant enhancements in mycorrhizal rates and shoot biomass production with respect to the non-sterilized soil. CONCLUSIONS: These variations confirm the influence of the edaphic conditions on the chemical components biosynthesis pathways of oregano plants. The results of this investigation could be used for determining optimal soil type, leading to a good quality herb production.

3.
Environ Monit Assess ; 190(12): 738, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30460414

ABSTRACT

The present study aims to evaluate the nature and level of chemical pollution as well as the potential toxicity and ecotoxicity of an agricultural soil irrigated by the water of Litani River. Our findings showed that the soil was mainly contaminated by alkanes (hentriacontane, octadecane, hexadecane) and metal trace elements (nickel, vanadium, chromium, and manganese). Soil organic extracts showed high cytotoxicity against human hepatic (HepG2) and bronchial epithelial cells (Beas-2B). Soil ecotoxicity was revealed by seed germination inhibition of several plant species (wheat, clover, alfalfa, tall fescue, and ryegrass) ranging from 7 to 30% on the polluted soil compared to non-polluted one. In addition, significant decreases in telluric microbial biomasses (bacterial and fungal biomasses), quantified by phospholipid fatty acids (PLFA) analysis were observed in polluted soil compared to non-contaminated soils. The density of the arbuscular mycorrhizal fungal (AMF) spores isolated from the polluted soil was about 316 spores/100 g. Three main AMF species were identified as Funelliformis mosseae, Septoglomus constrictum, and Claroideoglomus lamellosum. Moreover, 16 indigenous plant species were inventoried with Silybum marianum L. as the dominant one. Plant biodiversity indices (Shannon, Simpson, Menhinick, and Margaleff) were lower than those found in other contaminated soils. Finally, it was found that all the present plant species on this polluted site were mycorrhized, suggesting a possible protection of these plants against encountered pollutants, and the possibility to use AMF-assisted phytoremediation to clean-up such a site.


Subject(s)
Alkanes/analysis , Environmental Monitoring , Environmental Pollution/analysis , Poaceae/growth & development , Soil Pollutants/analysis , Soil Pollutants/toxicity , Spores, Fungal/isolation & purification , Trace Elements/analysis , Water Pollution, Chemical/analysis , Agriculture , Biodegradation, Environmental , Biodiversity , Biomass , Cell Line, Tumor , Hep G2 Cells , Humans , Mycorrhizae/growth & development , Plant Roots/chemistry , Risk Assessment , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...