Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 27(14): 2367-76, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25722118

ABSTRACT

A multilayered triboelectric nanogenerator (MULTENG) that can be actuated by acoustic waves, vibration of a moving car, and tapping motion is built using a 3D-printing technique. The MULTENG can generate an open-circuit voltage of up to 396 V and a short-circuit current of up to 1.62 mA, and can power 38 LEDs. The layers of the triboelectric generator are made of polyetherimide nanopillars and chalcogenide core-shell nanofibers.

2.
J Chem Phys ; 121(6): 2752-7, 2004 Aug 08.
Article in English | MEDLINE | ID: mdl-15281878

ABSTRACT

We have investigated the behavior of single-walled carbon nanotubes and nanospheres (C(60)) under high hydrostatic pressure using Raman spectroscopy over the pressure range 0.2-10 GPa using a diamond anvil cell. Different liquid mixtures were used as pressure transmission fluids (PTF). Comparing the pressure dependence of the Raman peak positions for the nanotubes and the nanospheres in different PTF leads to the observation of a number of new phenomena. The observed shift in Raman peak position of both radial and tangential modes as a function of applied pressure and their dependence on the PTF chemical composition can be rationalized in terms of adsorption of molecular species from the of PTF on to the surface of the carbon nanotubes and/or nanospheres. The peak shifts are fully reversible and take place at a comparatively modest pressure (2-3 GPa) that is far below pressures that might be required to collapse the nanoparticles. Surface adsorption of molecular species on the nanotube or nanospheres provides a far more plausible rational for the observed phenomena than ideas based on the notion of tube collapse that have been put forward in the recent literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...