Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
RSC Adv ; 14(24): 16713-16726, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784419

ABSTRACT

The EGFR/PI3K/Akt/mTOR pathway is important for metastasis, medication resistance, apoptosis prevention, and malignant transformation. Mutations in lung and colon cancer typically change this pathway's expression. As a result, a novel class of 1,2,4-oxdiazoles that are attached to 1,2,3-triazoles, 5-11, were created as possible anticancer drugs. The produced compounds are all examined by spectroscopic and micro-analytical techniques. MTT assay results on lung (A549) colon (Caco-2) and normal lung fibroblast (WI38) revealed that compounds 6a, 6b, 8a, and 11b demonstrated strong and selective antiproliferative activities against lung (A549) and colon (Caco-2) cancer cell lines while the remaining derivatives showed moderate to low activity. qPCR data revealed that the potential hits had large fold changes in the downregulation of EGFR, mTOR, and PI3K; they upregulate the amount of p53 to support their mode of action even more. Interestingly, docking investigations validated the biological outcomes by demonstrating a strong affinity of our compounds against EGFR active regions. Computational predictions of all the synthesized compounds' pharmacokinetic profiles, physicochemical characteristics, and drug-likeness data indicated that the promising hits might be taken into consideration as drug-like prospects.

3.
Bioorg Chem ; 146: 107292, 2024 May.
Article in English | MEDLINE | ID: mdl-38555798

ABSTRACT

Breast cancer is a common public health disease causing mortality worldwide. Thus, providing novel chemotherapies that tackle breast cancer is of great interest. In this investigation, novel pyrido[2,3-d]pyrimidine derivatives 3,4,(6a-c),(8a,b),9-20 were synthesized and characterized using a variety of spectrum analyses. The geometric and thermal parameters of the novel thiouracil derivatives 3,4,6a,(8a,b),11,12,17,18, 19 were measured using density functional theory (DFT) via DFT/B3LYP/6-31 + G(d,p) basis set. All synthesized compounds were evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) method using MCF-7 and MDA-MB-231 breast cancerous cells, compound 17 had the maximum anticancer activity against both breast cancerous cells, recording the lowest half-maximal inhibitory concentration (IC50) values (56.712 µg/mL for MCF-7 cells and 48.743 µg/mL for MDA-MB-231 cells). The results were confirmed in terms of the intrinsic mechanism of apoptosis, where compound 17 had the highest percentage in the case of both cancer cells and recorded Bax (Bcl-2 associated X)/Bcl-2 (B-cell lymphoma 2) ratio 17.5 and 96.667 for MCF-7 and MDA-MB-231 cells, while compound 19 came after 17 in the ability for induction of apoptosis, where the Bax/Bcl-2 ratio was 15.789 and 44.273 for both cancerous cells, respectively. Also, compound 11 recorded a high Bax/Bcl-2 ratio for both cells. The safety of the synthesized compounds was applied on normal WI-38 cells, showing minimum cytotoxic effect with undetectable IC50. Compounds 17, 11, and 19 recorded a significant increase of p53 upregulated modulator of apoptosis (PUMA) expression levels in the cancerous cells. The DFT method was also used to establish a connection between the experimentally determined values of the present investigated compounds and their predicted quantum chemical parameters. It was concluded that Compounds 17, 11, and 19 had anti-breast cancer potential through the induction of apoptotic Bax/Bcl-2 and PUMA expression levels.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Heterocyclic Compounds , Iohexol/analogs & derivatives , Humans , Female , bcl-2-Associated X Protein , Breast Neoplasms/pathology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/pharmacology , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Heterocyclic Compounds/pharmacology , Cell Proliferation
4.
Biomed J ; : 100714, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38452973

ABSTRACT

Mitochondria are vital organelles found within living cells and have signalling, biosynthetic, and bioenergetic functions. Mitochondria play a crucial role in metabolic reprogramming, which is a characteristic of cancer cells and allows them to assure a steady supply of proteins, nucleotides, and lipids to enable rapid proliferation and development. Their dysregulated activities have been associated with the growth and metastasis of different kinds of human cancer, particularly ovarian carcinoma. In this review, we briefly demonstrated the modified mitochondrial function in cancer, including mutations in mtDNA, reactive oxygen species production, dynamics, apoptosis of cells, autophagy, and calcium excess to maintain cancer genesis, progression, and metastasis. Furthermore, the mitochondrial dysfunction pathway for some genomic, proteomic, and metabolomics modifications in ovarian cancer has been studied. Additionally, ovarian cancer has been linked to targeted therapies and biomarkers found through various alteration processes underlying mitochondrial dysfunction, notably targeting reactive oxygen species, metabolites, rewind metabolic pathways, and chemo-resistant ovarian carcinoma cells.

5.
Biomolecules ; 14(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38397453

ABSTRACT

The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a-k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer.


Subject(s)
Acrolein/analogs & derivatives , Antineoplastic Agents , Chalcone , Chalcones , Colonic Neoplasms , Humans , Structure-Activity Relationship , Antioxidants/pharmacology , Chalcones/pharmacology , Cell Line, Tumor , Caco-2 Cells , Chalcone/pharmacology , Chalcone/chemistry , Cell Proliferation , Antineoplastic Agents/chemistry , Colonic Neoplasms/drug therapy , Apoptosis , Molecular Structure
6.
Sci Rep ; 13(1): 21554, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057351

ABSTRACT

Azo dyes are widely used for dyeing polyester fabrics but require optimization of properties like color strength and fastness. Fourteen novel disperse azo dyes were synthesized from 2,3-naphthalenediol and aniline derivatives to examine their potential for polyester dyeing. The dyes were prepared via diazotization and coupling reactions and characterized using FT-IR, UV-Vis, 1H NMR, 13C NMR, and elemental analysis. Furthermore, several techniques were employed to study the azo-hydrazone tautomerism, including UV-Vis spectroscopy, NMR spectroscopy, and computational methods. DFT computations revealed hydrazone tautomers were more stable than azo tautomers. The prepared azo dyes were applied on polyester fabrics at 2% depth using a high temperature pressure technique in water utilizing DYEWELL-002 as a dispersing agent. The color shading of dyed polyester samples ranged from peach amber to apple of my eye, depending on the coupler moieties. The fastness properties, assessed using a grey scale of dyed polyester fabrics, indicated very good to excellent grades for most dyes. Additionally, measurements of color strength (K/S), dye exhaustion (%E), as well as colorimetric colors CILAB of dyed polyester fabrics values, were measured and discussed in terms of the effect of substituents. The findings provide new insights into structure-performance relationships to design optimized disperse dyes for polyester coloration. Overall, the synthesized aryldiazenyl dyes are promising candidates for dyeing polyester fabrics across a spectrum of shades with good fastness properties.

7.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836284

ABSTRACT

Energy storage applications received great attention due to environmental aspects. A green method was used to prepare a composite of nickel-iron-based spinel oxide nanoparticle@CNT. The prepared materials were characterized by different analytical methods like X-ray diffraction, X-ray photon spectroscopy (XPS), scanning electron microscopy (SEM), and transmitted electron microscopy (TEM). The synergistic effect between nickel-iron oxide and carbon nanotubes was characterized using different electrochemical methods like cyclic voltammetry (CV), galvanostatic charging/discharging (GCD), and electrochemical impedance spectroscopy (EIS). The capacitances of the pristine NiFe2O4 and NiFe2O4@CNT were studied in different electrolyte concentrations. The effect of OH- concentrations was studied for modified and non-modified surfaces. Furthermore, the specific capacitance was estimated for pristine and modified NiFe2O4 at a wide current range (5 to 17 A g-1). Thus, the durability of different surfaces after 2000 cycles was studied, and the capacitance retention was estimated as 78.8 and 90.1% for pristine and modified NiFe2O4. On the other hand, the capacitance rate capability was observed as 65.1% (5 to 17 A g-1) and 62.4% (5 to 17 A g-1) for NiFe2O4 and NiFe2O4@CNT electrodes.

8.
Int J Biol Macromol ; 253(Pt 4): 126856, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37714231

ABSTRACT

This research aimed to prepare, characterize, and investigate the biological efficacy of chitosan­cobalt (II) oxide hybrid nanocomposites against a variety of micrograms. Analytical methods, FTIR, SEM, XRD, and EDX, were utilized to thoroughly characterize the produced CS-CoO nanocomposite. In FTIR spectra, the presence of the chitosan peaks in addition to that of CoO at 681 and 558 cm-1 confirmed that CoO molecules interact with the chitosan backbone. Moreover, in the XRD measurements, significantly less chitosan crystallinity was observed. Due to the incorporation of a larger amount of cobalt oxide within the polymer matrix. Applying the Debye-Sherrer calculation, the crystallite size was obviously reduced from 48.24 nm (5 wt %) to 19.27 nm (20 wt %) for the obtained nanocomposites. Furthermore, SEM measurements showed a transformation in the chitosan surface with the physical adsorption of CoO molecules on the surface active sites of chitosan that were visible in SEM graphs. Additionally, EDX determined the amount of Co element within the chitosan, with the sample of 20 wt % weight being found to be 19.26 wt %. The variable dose well-diffusion method was utilized to assess the efficacy of the CS-Co nanocomposite against a wide range of bacteria and fungi. CS - CoO nanocomposite is more effective than chitosan alone as an antibacterial agent against both Gram-positive and Gram-negative bacteria. Moreover, the MTT approach was employed to measure the cytotoxicity based on the cell viability of different cancer cell lines under different UV expositions. The proportion of the destroyed cells elevated due to the easy diffusion of CS - CoO nanocomposite into cancer cells as UV-free anticancer activity. UV exposition has stimulated the anticancer activity, which was attributed to an increase in ROS generation caused by the increased dose of the chitosan and its CS - CoO nanocomposites. Furthermore, the antioxidant capacities of the prepared nano-composites thin films were validated using the DPPH free radical scavenging method and showed good antioxidant activities with the DPPH radical compared with standard vitamin C. It has been noticed that by increasing the content of CoO nanoparticles from 5 to 20 wt %, the biological activity of the prepared nanocomposites was enhanced.


Subject(s)
Chitosan , Nanocomposites , Chitosan/pharmacology , Chitosan/chemistry , Anti-Bacterial Agents/chemistry , Antioxidants , Gram-Negative Bacteria , Gram-Positive Bacteria , Oxides/pharmacology , Cobalt , Nanocomposites/chemistry , Pharmaceutical Preparations
9.
Molecules ; 28(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37687250

ABSTRACT

The goal of the current study was to prepare two new homologous series of N,N'-diarylurea and N,N'-diarylthiourea derivatives to investigate the therapeutic effects of these derivatives on the methodologies of inhibition directed on human MCF-7 cancer cells. The molecular structures of the prepared derivatives were successfully revealed through elemental analyses, 1H-NMR, 13C-NMR and FT-IR spectroscopy. The cytotoxic results showed that Diarylthiourea (compound 4) was the most effective in suppressing MCF-7 cell growth when compared to all other prepared derivatives, with the most effective IC50 value (338.33 ± 1.52 µM) after an incubation period of 24 h and no cytotoxic effects on normal human lung cells (wi38 cells). Using the annexin V/PI and comet tests, respectively, treated MCF-7 cells with this IC50 value of the Diarylthiourea 4 compound displayed a considerable increase in early and late apoptotic cells, as well as an intense comet nucleus in comparison to control cells. An arrest of the cell cycle in the S phase was observed via flow cytometry in MCF-7 cells treated with the Diarylthiourea 4 compound, suggesting the onset of apoptosis. Additionally, ELISA research showed that caspase-3 was upregulated in MCF-7 cells treated with compound 4 compared to control cells, suggesting that DNA damage induced by compound 4 may initiate an intrinsic apoptotic pathway and activate caspase-3. These results contributed to recognizing that the successfully prepared Diarylthiourea 4 compound inhibited the proliferation of MCF-7 cancer cells by arresting the S cell cycle and caspase-3 activation via an intrinsic apoptotic route. These results, however, need to be verified through in vivo studies utilizing an animal model.


Subject(s)
Cell Nucleus , Neoplasms , Animals , Humans , Caspase 3 , Spectroscopy, Fourier Transform Infrared , Proteolysis , MCF-7 Cells
10.
Heliyon ; 9(9): e19384, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662800

ABSTRACT

New liquid crystalline hydrogen bonded 3- (or 4)-n-alkanoyloxy benzoic acids were synthesized and probed theoretically and experimentally. The molecular structures of these compounds were elucidated by proton NMR, carbon-13 NMR and elemental analyses. Differential scanning calorimetry (DSC) was used to investigate the thermal and mesomorphic properties of all the symmetrical dimers that bearing identical alkanoyloxy chains. Moreover, polarized optical microscopy (POM) was used to determine their mesophases. The findings show that all the designed symmetrical dimers exhibit the smectic mesophase with relative thermal stability that depends on the length of their terminal side chain. Additionally, the experimental findings of the mesomorphic behavior are further supported by DFT calculations. The alkanoyloxy benzoic acid para-derivatives (In) were shown to be more stable than their meta-substituted (IIn) analogues due to stronger hydrogen bonding interactions. The computed reactivity parameters showed that the position of ester moiety has a significant impact on the acids reactivity. The absorbance spectra of both the 3- (or 4)-n-alkanoyloxy benzoic acids revealed a blue shift with the increment of the of alkyl chain size; however, the energy band gaps of 3-n-alkanoyloxy benzoic derivatives were found to be slightly higher than those of the 4-n-alkanoyloxy benzoic acids. Moreover, the photoluminescence spectrum of the prepared materials is rather broad, and exhibited a red shift as the alkyl chain length increases. The fluorescence lifetime shown to rise as alkyl chain length grows longer, and 3-n-alkanoyloxy benzoic acids have slightly longer lifetime compared to their 4-n-alkanoyloxy benzoic analogues.

11.
Materials (Basel) ; 16(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37374488

ABSTRACT

The mesomorphic stability and optical activity of new group-based benzotrifluoride liquid crystals, (E)-4-(((4-(trifluoromethyl) phenyl) imino) methyl) phenyl 4-(alkyloxy)benzoate, or In, were investigated. The end of the molecules connected to the benzotrifluoride moiety and the end of the phenylazo benzoate moiety have terminal alkoxy groups which can range in chain length from 6 to 12 carbons. The synthesized compounds' molecular structures were verified using FT-IR, 1H NMR, mass spectroscopy, and elemental analysis. Mesomorphic characteristics were verified using differential scanning calorimetry (DSC) and a polarized optical microscope (POM). All of the homologous series that have been developed display great thermal stability across a broad temperature range. Density functional theory (DFT) determined the examined compounds' geometrical and thermal properties. The findings showed that every compound is entirely planar. Additionally, by using the DFT approach, it was possible to link the experimentally found values of the investigated compounds' investigated compounds' mesophase thermal stability, mesophase temperature ranges, and mesophase type to the predicted quantum chemical parameters.

12.
Curr Org Synth ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37151170

ABSTRACT

A series of dispersed reactive dyes bearing azo and cyanuric groups were synthesized, and their structures were established using spectral and elemental analyses. METHOD: The IR, 1H NMR, and DFT studies indicated that the prepared reactive disperse dyes predominately exist as hydrazone tautomers. The electronic absorption spectra in methanol were observed and compared to those computed using B3LYP/6-311G(d,p). The dyeing efficiency of the produced dispersed reactive dyes was examined on polyester, cotton, and polyester/cotton blended fabrics. RESULTS: The degree of exhaustion and the quick properties of the dyed samples in terms of perspiration, washing, scorch and light fastness were assessed. It was found that reactive disperse dyes under investigation have a higher affinity for dyeing polyester textiles than cotton textiles. CONCLUSION: Moreover, the reflectance and color strength of the synthesized dyes were measured and discussed.

13.
Sci Rep ; 13(1): 7826, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188698

ABSTRACT

Benzidine was coupled with ethyl cyanoacetate, and malononitrile, to give azo-hydrazo products which in turn were cyclized by using hydrazine and phenyl hydrazine to give 4,4'-([1,1'-biphenyl]-4,4'-diylbis(hydrazin-2-yl-1-ylidene))bis pyrazole derivatives 5-7. These compounds were identified by various spectral analysis. The examination of 0.1 M NaOH and 0.1 M HCl in DMF revealed that the λmax of the synthesized dyes are quite sensitive to pH variation and slightly affected by the coupler moieties. Utilizing the dispersion agent DYEWELL-002, polyester fabric (PE-F) was dyed in water. The color strength (K/S), its summation (K/Ssum), dye exhaustion (%E) and reflectance values were measured and discussed. The DFT method estimates the chemical descriptor parameters of the titled dyes, using B3LYP/6-31G(d,p) level to investigate the performance of dyes as well as to postulate a mechanism of dyeing process.

14.
Molecules ; 28(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175214

ABSTRACT

The effect of the terminal benzyloxy group on the mesomorphic properties of liquid crystalline materials developed from rod-like Schiff base has been described. For this objective, a novel Schiff base liquid crystal family, specifically new series of Schiff base liquid crystals, namely, (E)-4-(alkyloxy)-N-(4-(benzyloxy)benzylidene)aniline, In, are prepared and investigated in detail. The length of the terminal alkyloxy chain (n) varies amongst the compounds in the series. Where n varies between 6, 8 and 16 carbons. At the other end of the compounds, benzyloxy moiety was attached. The molecular structures of all synthesized compounds were established using different spectroscopic techniques. The molecular self-assembly was explored using differential scanning calorimetry (DSC) and polarized optical microscope (POM). Depending on the length of the terminal alkyloxy chain, only one type of SmA phase with different stability was observed. The previously reported para-substituted systems and the present investigated compounds were compared and discussed. The calculated quantum chemical parameters were computationally correlated using the DFT method via the B3LYP 6-311G(d,p) basis set. The theoretical computations revealed that the length of the alkyl side chain influences the zero-point energy, reactivity and other estimated thermodynamic parameters of benzoyloxy/azomethine derivatives. Furthermore, the FMO energy analysis shows that molecule I16 have higher HOMO energies than the other compounds, and I6 has a much lower LUMO level than the rest.

15.
Heliyon ; 9(4): e14871, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025900

ABSTRACT

New organic derivatives named, (E)-3(or4) -(alkyloxy)-N-{(trifluoromethyl)benzylidene}aniline, 1a-f, were synthesized and examined their liquid crystalline behaviors. FT-IR, 1H NMR, 13C NMR, 19F NMR, elemental analyses and GCMS were used to validate the prepared compounds' chemical structures. We used differential scanning calorimetry (DSC) and polarized optical microscopy (POM) to investigate the mesomorphic characteristics of the formed Schiff bases. All tested compounds of series 1a-c have mesomorphic behaviour of nematogenic temperature ranges while the group 1d-f show non-mesomorphic properties. Moreover, it was found that the enantiotropic N phases included all of the homologue 1a-c. Computational studies using DFT (density functional theory) validated the experimental mesomorphic behavior results. All the analyzed compounds had their dipole moments, polarizability, and reactivity characteristics explained. Theoretical simulations showed that as the length of the terminal chain is increased, the polarizability of the stuided compounds increases. Consequently, compounds 1a and 1d have the least polarizability.

16.
Molecules ; 27(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36558116

ABSTRACT

Two groups of laterally substituted non-mesomorphic and liquid crystalline materials bearing monoazo group were prepared and investigated via experimental and theoretical techniques. The molecular structures of the designed dyes were evaluated by FT-IR and NMR spectroscopic analyses. Mesomorphic examinations for all synthesized dyes were investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Results revealed that, the thermal and optical properties of investigated compounds are mainly dependent on their molecular geometry. The optimized geometries of the azo derivatives and their electronic absorption of the dyes were carried out using the B3LYP/6-311G level of the DFT method. The azo dyes were measured for their dyeing performance on polyester fabrics. The dyed fabrics have excellent fastness properties with a color strength of 1.49-3.43 and an exhaustion rate of 82-64%. The chemical descriptor parameters of disperse azo dyes in gas phase were calculated and correlated with dyeing parameters.


Subject(s)
Azo Compounds , Coloring Agents , Coloring Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Azo Compounds/chemistry , Polyesters/chemistry , Textiles
17.
Molecules ; 27(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35956864

ABSTRACT

A variety of structurally different pyrimidines were synthesized. Elemental analysis, FT-IR, 1H NMR, and 13C NMR spectroscopy were used to confirm the chemical structures of all prepared compounds. The synthesized pyrimidines were screened against the growth of five human cancer cell lines (prostate carcinoma PC3, liver carcinoma HepG-2, human colon cancer HCT-116, human breast cancer MCF-7, human lung cancer A-549), and normal human lung fibroblasts (MRC-5) using MTT assay. Most of the screened pyrimidines have anti-proliferative activity on the growth of the PC3 cell line. Compounds 3b and 3d were more potent than the reference vinblastine sulfate (~2 to 3 × fold) and they can be considered promising leads for treating prostate cancer disease. Moreover, the screened compounds 3b, 3f, 3g, 3h, and 5 were assessed according to the values of their selectivity index (SI) and were found to be more selective and safer than vinblastine sulfate. Furthermore, using in silico computational tools, the physicochemical properties of all pyrimidine ligands were assessed, and the synthesized compounds fall within the criteria of RO5, thus having the potential to be orally bioavailable.


Subject(s)
Antineoplastic Agents , Carcinoma , Heterocyclic Compounds , Antineoplastic Agents/chemistry , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Pyrimidines/chemistry , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship , Vinblastine/pharmacology
18.
Molecules ; 27(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807398

ABSTRACT

The thermal stability and mesomorphic behavior of a new biphenyl azomethine liquid crystal homologues series, (E)-4-(([1,1'-biphenyl]-4-ylmethylene)amino)phenyl 4-(alkoxy)benzoate, In, were investigated. The chemical structures of the synthesized compounds were characterized using FT-IR, NMR, and elemental analyses. Differential scanning calorimetry (DSC) and polarized optical microscopy were employed to evaluate the mesomorphic characteristics of the designed homologues. The examined homologues possessed high thermal stability and broad nematogenic temperature ranges. Furthermore, the homologues were covered by enantiotropic nematic phases. The experimental measurements of the mesomorphic behavior were substantiated by computational studies using the density functional theory (DFT) approach. The reactivity parameters, dipole moments, and polarizability of the studied molecules are discussed. The theoretical calculations demonstrated that as the chain length increased, the polarizability of the studied series increased; while it did not significantly affect the HOMO-LUMO energy gap and other reactivity descriptors, the biphenyl moiety had an essential impact on the stability of the possible geometries and their thermal as well as physical parameters.

19.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744824

ABSTRACT

A new N,N'-disubstituted piperazine conjugated with 1,3,4-thiadiazole and 1,2,4-triazole was prepared and the chemical structures were identified by IR, NMR and elemental analysis. All the prepared compounds were tested for their antimicrobial activity. The antimicrobial results indicated that the tested compounds showed significant antibacterial activity against gram-negative strains, especially E. coli, relative to gram-positive bacteria. Docking analysis was performed to support the biological results; binding modes with the active site of enoyl reductase amino acids from E. coli showed very good scores, ranging from -6.1090 to -9.6184 kcal/mol. Correlation analysis was performed for the inhibition zone (nm) and the docking score.


Subject(s)
Anti-Infective Agents , Escherichia coli , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Oxidoreductases , Piperazines/chemistry , Thiadiazoles
20.
Polymers (Basel) ; 14(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335586

ABSTRACT

In this study, a homologous series of novel liquid crystalline compounds bearing the bis-azomethine central linkage (-CH=N-N=CH-), namely ((1E,1'E)-hydrazine-1,2-diylidenebis(methanylylidene))bis(4,1-phenylene) dialkanoate (In), was synthesized, and the mesophase and thermal properties were investigated theoretically and experimentally. The molecular structures of the prepared compounds were determined using elemental analysis, NMR, and FT-IR spectroscopy. The mesophase transitions were detected by differential scanning calorimetry (DSC), and the mesophases were identified using polarized optical microscopy (POM). The results indicated that the derivative with the shortest length (I5) was purely nematogenic, while the other homologues (I9 and I15) possessed SmC mesophases. The optimal geometrical structures of the investigated group were derived theoretically. The estimated results demonstrated that all homologues were mesomorphic, and their type depended on the length of the terminal chains. Computations based on density functional theory (DFT) were used to explain the experimental data. The calculated dipole moment, polarizability, thermal energy, and molecular electrostatic potential all showed that it was possible to predict the mesophase type and stability, which varied according to the size of the molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...