Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10871, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740777

ABSTRACT

Reinforcement of the Internet of Medical Things (IoMT) network security has become extremely significant as these networks enable both patients and healthcare providers to communicate with each other by exchanging medical signals, data, and vital reports in a safe way. To ensure the safe transmission of sensitive information, robust and secure access mechanisms are paramount. Vulnerabilities in these networks, particularly at the access points, could expose patients to significant risks. Among the possible security measures, biometric authentication is becoming a more feasible choice, with a focus on leveraging regularly-monitored biomedical signals like Electrocardiogram (ECG) signals due to their unique characteristics. A notable challenge within all biometric authentication systems is the risk of losing original biometric traits, if hackers successfully compromise the biometric template storage space. Current research endorses replacement of the original biometrics used in access control with cancellable templates. These are produced using encryption or non-invertible transformation, which improves security by enabling the biometric templates to be changed in case an unwanted access is detected. This study presents a comprehensive framework for ECG-based recognition with cancellable templates. This framework may be used for accessing IoMT networks. An innovative methodology is introduced through non-invertible modification of ECG signals using blind signal separation and lightweight encryption. The basic idea here depends on the assumption that if the ECG signal and an auxiliary audio signal for the same person are subjected to a separation algorithm, the algorithm will yield two uncorrelated components through the minimization of a correlation cost function. Hence, the obtained outputs from the separation algorithm will be distorted versions of the ECG as well as the audio signals. The distorted versions of the ECG signals can be treated with a lightweight encryption stage and used as cancellable templates. Security enhancement is achieved through the utilization of the lightweight encryption stage based on a user-specific pattern and XOR operation, thereby reducing the processing burden associated with conventional encryption methods. The proposed framework efficacy is demonstrated through its application on the ECG-ID and MIT-BIH datasets, yielding promising results. The experimental evaluation reveals an Equal Error Rate (EER) of 0.134 on the ECG-ID dataset and 0.4 on the MIT-BIH dataset, alongside an exceptionally large Area under the Receiver Operating Characteristic curve (AROC) of 99.96% for both datasets. These results underscore the framework potential in securing IoMT networks through cancellable biometrics, offering a hybrid security model that combines the strengths of non-invertible transformations and lightweight encryption.


Subject(s)
Computer Security , Electrocardiography , Internet of Things , Electrocardiography/methods , Humans , Algorithms , Signal Processing, Computer-Assisted , Biometric Identification/methods
2.
Multimed Tools Appl ; : 1-33, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36467438

ABSTRACT

The coronavirus is an irresistible virus that generally influences the respiratory framework. It has an effective impact on the global economy specifically, on the financial movement of stock markets. Recently, an accurate stock market prediction has been of great interest to investors. A sudden change in the stock movement due to COVID -19 appearance causes some problems for investors. From this point, we propose an efficient system that applies sentiment analysis of COVID-19 news and articles to extract the final impact of COVID-19 on the financial stock market. In this paper, we propose a stock market prediction system that extracts the stock movement with the COVID spread. It is important to predict the effect of these diseases on the economy to be ready for any disease change and protect our economy. In this paper, we apply sentimental analysis to stock news headlines to predict the daily future trend of stock in the COVID-19 period. Also, we use machine learning classifiers to predict the final impact of COVID-19 on some stocks such as TSLA, AMZ, and GOOG stock. For improving the performance and quality of future trend predictions, feature selection and spam tweet reduction are performed on the data sets. Finally, our proposed system is a hybrid system that applies text mining on social media data mining on the historical stock dataset to improve the whole prediction performance. The proposed system predicts stock movement for TSLA, AMZ, and GOOG with average prediction accuracy of 90%, 91.6%, and 92.3% respectively.

3.
Comput Intell Neurosci ; 2021: 8016525, 2021.
Article in English | MEDLINE | ID: mdl-34938329

ABSTRACT

Smart health surveillance technology has attracted wide attention between patients and professionals or specialists to provide early detection of critical abnormal situations without the need to be in direct contact with the patient. This paper presents a secure smart monitoring portable multivital signal system based on Internet-of-Things (IoT) technology. The implemented system is designed to measure the key health parameters: heart rate (HR), blood oxygen saturation (SpO2), and body temperature, simultaneously. The captured physiological signals are processed and encrypted using the Advanced Encryption Standard (AES) algorithm before sending them to the cloud. An ESP8266 integrated unit is used for processing, encryption, and providing connectivity to the cloud over Wi-Fi. On the other side, trusted medical organization servers receive and decrypt the measurements and display the values on the monitoring dashboard for the authorized specialists. The proposed system measurements are compared with a number of commercial medical devices. Results demonstrate that the measurements of the proposed system are within the 95% confidence interval. Moreover, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) for the proposed system are calculated as 1.44, 1.12, and 0.012, respectively, for HR, 1.13, 0.92, and 0.009, respectively, for SpO2, and 0.13, 0.11, and 0.003, respectively, for body temperature. These results demonstrate the high accuracy and reliability of the proposed system.


Subject(s)
Cloud Computing , Internet of Things , Communication , Humans , Oxygen Saturation , Reproducibility of Results
4.
J Opt Soc Am A Opt Image Sci Vis ; 37(11): C118-C124, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33175740

ABSTRACT

A contact-free inexpensive measurement system with an algorithm based on the integral form of video frames is proposed to estimate the respiration rate from an extracted respiration pattern. The proposed algorithm is applied and tested on 28 videos of sleeping-simulated positions, and the results are compared with the manual visual inspection values. With linear regression, the determination coefficient (R2) is 0.961, which demonstrates high agreement with reference measurements. In addition, the Bland-Altman plot shows that almost all data points are within the 95% limits of agreement. Moreover, the time complexity of the proposed algorithm, which involves taking just a single point value of the integral image, is lower than that of traditional methods that circulate over a large number of points. In other words, the proposed algorithm achieves O(1) fixed-time complexity compared to O(N2) for traditional methods. The average speed of processing is enhanced by about 17.4%.


Subject(s)
Monitoring, Physiologic/methods , Respiratory Rate , Video Recording , Algorithms , Humans , Telemedicine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...