Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Prosthodont ; 33(2): 149-156, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36738226

ABSTRACT

PURPOSE: Durability is a critical factor for the success of long-term provisional restorations. This study evaluated the effect of different storage media and cyclic loading on the biaxial flexural strength of different types of provisional materials. MATERIALS AND METHODS: Discs (N = 360, 10 × 2 mm) were prepared from different provisional materials; conventional (Protemp 4, Tuff-Temp, Tempron), CAD-CAM milled (VITA CAD-Temp, breCAM.multiCOM), and 3D-printed (Nextdent C&B MFH) (n = 60). Each material group was subdivided into four subgroups according to the storage media (n = 15): nonaged, artificial saliva, mouthwash, and coffee. The specimens in storage media were placed in an incubator at 37°C for 4 weeks followed by 60,000 simulated chewing cycles. Biaxial flexural strength test was done. Data were analyzed using two-way ANOVA. Weibull distribution parameters were estimated. RESULTS: Both the material and aging protocol showed a significant effect on the biaxial flexural strength. Both Protemp 4 and Nextdent C&B MFH showed a significantly higher biaxial flexural strength before and after aging compared to all other materials. Protemp 4 and Tuff Temp showed a significant decrease in strength with aging. CAD-CAM materials showed higher Weibull moduli. CONCLUSIONS: The 3D-printed polymethylmethacrylate provisional material presents with both greater biaxial flexural strength and increased durability against chemical and mechanical aging compared to conventional and CAD-CAM milled provisional materials tested.


Subject(s)
Dental Materials , Flexural Strength , Materials Testing , Stress, Mechanical , Computer-Aided Design , Surface Properties
2.
Article in English | MEDLINE | ID: mdl-37910183

ABSTRACT

The male reproductive system is negatively influenced by Al exposure. Al represented a considerable hazard to men's reproduction capabilities. Amygdalin (AMG) and spirulina platensis (SP) have been considered to have a strong antioxidant and repro-protective activity; also, targeted drug delivery systems called niosomes improve the distribution of water-soluble medications like amygdalin and spirulina. Current study targeted to determine the effectiveness of AMG and SP against negative reproductive impact resulted by aluminum chloride (AlCl3) toxicity. Sixty adult male albino rats were separated into 6 groups, including the control group, which received distilled water; AlCl3 group, which received AlCl3; AMG+AlCl3 group, which received AlCl3+AMG; AMGLN+AlCl3 group, which received AlCl3+amygdalin-loaded niosomes; SP+AlCl3 group, which received AlCl3+SP; and SPLN+AlCl3 group, which received AlCl3+spirulina-loaded niosomes. All treatments were orally gavaged daily for 5 weeks, and rats were weighed weekly. At the termination of the experiment, some males (three from each group) were used for fertility traits via mating thirty virgin rat females (in a ratio of 1:2 and 2:3 male:female, respectively) followed by recording of birth weights and litter size (number of pups per each female) at birth to assess males' reproductive capability. Other males were euthanized for collection of serum, epididymal semen samples, and tissue samples for biochemical, sperm evaluation, gene expression, and histopathological measurements. There are a considerable number of negative impacts of AlCl3 on male fertility clarified by declined serum testosterone levels; an increased oxidative stress (MDA, TAC); deteriorated semen quality; down-regulation of CYP11A1, StAR, and HSD-3b gene expressions; and testicular tissue degenerative changes. In addition, litter size (number of pups per each female) and birth weights of pups obtained from mated females were affected. AMG and SP treatments, either in niosomal or conventional form, alleviated the AlCl3 negative effects by reducing oxidative stress; increasing testosterone levels; improving semen quality; upregulating of CYP11A1, StAR, and HSD-3b gene expressions; and reducing degenerative changes of testicular tissue. Besides, negative reproductive effect was diminished as observed by changes in the litter size (number of pups per each female) and birth weights of pups obtained from mated females. AMG and SP treatments (either in niosomal or conventional form), ameliorated the AlCl3 negative effects as they possess powerful antioxidant activity, as well as they have the ability to improve the reproductive activity of affected males.

3.
Clin Oral Investig ; 27(11): 6757-6768, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37796335

ABSTRACT

OBJECTIVES: To investigate the effect of three different calcium silicate-based materials (CSBM) on the biological behavior of human periodontal ligament stem cells (hPDLSCs). METHODS: Eluates of Biodentine, NeoPutty and TheraCal PT prepared at 1:1, 1:2, and 1:4 ratios were extracted under sterile conditions. The cytotoxicity of the extracts to the hPDLSCs was assessed using the MTT assay. Scratch wound healing assay was utilized for assessing cell migration. Scanning electron microscopy was used to detect cell attachment and morphology. Calcium ion release was measured using inductively coupled plasma-optical emission spectrometry; the pH-value was evaluated with a pH-meter. ANOVA with post hoc Tukey test was used for statistical analysis. RESULTS: Cell viability was significantly higher for Biodentine and NeoPutty at day 1 with all dilutions (p < 0.05), while at day 3 and day 7 with dilutions 1:2 and 1:4; all materials showed similar behavior (p > 0.05). Biodentine had the highest percentage of cell migration into the scratched area at day 1 for all dilutions (p < 0.05). Stem cells were attached favorably on Biodentine and NeoPutty with evident spreading, and intercellular communications; however, this was not shown for TheraCal PT. Biodentine showed the highest pH values and calcium ion release (p < 0.05). CONCLUSIONS: The resin-free CSBM showed better performance and favorable biological effects on hPDLSCs and were therefore considered promising for usage as endodontic repair materials. CLINICAL SIGNIFICANCE: Proper selection of materials with favorable impact on the host stem cells is crucial to ensure outcome in different clinical scenarios.


Subject(s)
Root Canal Filling Materials , Humans , Root Canal Filling Materials/pharmacology , Calcium/pharmacology , Materials Testing , Periodontal Ligament , Calcium Compounds/pharmacology , Silicates/pharmacology , Stem Cells , Oxides/pharmacology
4.
Dent Med Probl ; 60(3): 497-503, 2023.
Article in English | MEDLINE | ID: mdl-37815514

ABSTRACT

BACKGROUND: Polyetherketoneketone (PEKK) was recently introduced as an alternative to titanium and ceramic implant abutments due to its apparent ability to dissipate excessive strain around dental implants. However, the biomechanical behaviors of implant abutment crown systems may change depending on the crown and abutment material combinations used. OBJECTIVES: This study aimed to assess how the crown material affects strain generation and fracture resistance of PEKK hybrid abutment crowns. MATERIAL AND METHODS: Sixteen dummy implants (Ø 3.7 x 11 mm), simulating maxillary first premolars, were restored with 16 milled PEKK hybrid abutments and randomly categorized into two groups according to the crown material (n = 8): Group C, milled composite crowns cemented on PEKK hybrid abutments; and Group Z, ultra-translucent zirconia crowns cemented on PEKK hybrid abutments. Before thermocycling, a cyanoacrylate-base adhesive was used to position two strain gauges on buccal and lingual crestal bone surfaces, and a vertical load (100 N) was applied to the central fossa to record the strain generated. Then, all samples were thermocycled between 5°C and 55°C before being loaded to fracture on a universal testing machine. Modes of failure were observed under an optical microscope, and representative samples were examined using a scanning electron microscope. Independent t-tests were used for intergroup comparisons. The significance level was set at (p < 0.05) for all tests.. RESULTS: The results showed a significant difference between both groups. The zirconia group recorded significantly higher strain and fracture resistance values than the composite group (p < 0.001). There was a positive correlation between the strain developed in peri-implant crestal bone and fracture resistance of the abutment crown complex. CONCLUSIONS: Strains developed in both groups were within the acceptable clinical range. The crown material substantially impacted the strain and fracture of the PEKK hybrid abutment crown system.


Subject(s)
Dental Implants , Humans , Dental Implant-Abutment Design/methods , Crowns
5.
Mol Biol Rep ; 50(11): 9085-9098, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37741810

ABSTRACT

BACKGROUND: A gastric ulcer is a painful lesion of the gastric mucosa that can be debilitating or even fatal. The effectiveness of several plant extracts in the therapy of this illness has been demonstrated in traditional pharmacopoeias. AIM: this study was aimed to see if propolis, ginseng in normal or nano form, and amygdalin might help in preventing the ulcerative effects of absolute ethanol. METHODS: Gastroprotective properties of pretreatments before ethanol gavage in rats were compared to omeprazole. The ulcer and stomach parameters (ulcerated regions) were measured (mm2), ulcer inhibition percentage, the stomachs were assessed macroscopically with gastric biopsy histological examinations. RESULTS: Amygdalin, normal and nano ginseng, nano propolis followed by propolis all showed great efficacy in protecting the cyto-architecture and function of the gastric mucosa. The number of ulcerated sites was greatly reduced, and the percentage of stomach protection was increased. Histopathological examination had confirmed great protective effects of the nanoformulations followed by amygdalin. The protection and healing rate was completed to about 100% in all tested materials while ulcer areas were still partially unhealed in normal propolis and omeprazole. Quantitative assay of the m-RNA levels Enothelin 1(ET-1), leukotriene4 (LT-4), and caspase 3(Cas-3) genes and Histamine were done and revealed significant up-regulations in ethanol group and the maximum protective effect was reported with ginseng nano, moreover the histamine content was significantly decreased with nano- formulated extracts. CONCLUSION: Amygdalin and the nanoformulated ginseng and propolis had exhibited a marked protective effect against the ulcerative toxic effects of ethanol.


Subject(s)
Amygdalin , Anti-Ulcer Agents , Propolis , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Ulcer/drug therapy , Ulcer/pathology , Propolis/pharmacology , Amygdalin/pharmacology , Histamine/pharmacology , Histamine/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Gastric Mucosa , Omeprazole/pharmacology , Ethanol/adverse effects
6.
J Mech Behav Biomed Mater ; 146: 106078, 2023 10.
Article in English | MEDLINE | ID: mdl-37597312

ABSTRACT

OBJECTIVE: Evaluation of setting time, compressive strength, pH, calcium ion release, and antibacterial activity of mineral trioxide aggregate (MTA) after modification with three different concentrations of nano-graphene oxide (GO) powder compared to unmodified Biodentine as a commercial control. METHODS: GO powder, unhydrated and hydrated cements were characterized using Environmental Scanning Electron Microscope (ESEM) with Energy Dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman Spectroscopy, and Fourier Transform Infrared spectroscopy (FTIR). GO was also analyzed using Scanning Transmission Electron Microscope (STEM) to determine average lateral dimensions. Specimens were prepared and grouped according to the concentration of GO added to Rootdent MTA (control, 1, 3, and 5 wt%) and the material used (MTA and unmodified Biodentine) into five groups. Setting time was evaluated using Gillmore penetrometer (n = 5). Compressive strength was evaluated using universal testing machine (n = 7). pH and calcium ion release were assessed using pH meter and Induced Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) at 1, 7, 14, and 28 days (n = 7). Antibacterial activity was evaluated against Streptococcus mutans using direct contact test (n = 7). One-way and repeated measures ANOVA followed by Tukey's post hoc test were used for data analysis with significance level set at p ≤ 0.05. RESULTS: Addition of GO to MTA reduced both initial and final setting time. GO modified MTA groups and unmodified Biodentine showed significantly increased calcium ion release at 14 and 28 days. All cements showed alkaline pH of the storage media at all tested time intervals. 1 wt% GO recorded the highest compressive strength values in MTA modified groups. The increased concentration of GO from 1 to 5 wt% successively increased antibacterial activity of MTA, with Biodentine showing the lowest significant value. CONCLUSION: Addition of 1 wt% GO can significantly improve the tested properties of tricalcium silicate-based cements without compromising their compressive strength. CLINICAL SIGNIFICANCE: GO is a promising modification for tricalcium silicate cements to improve setting time, compressive strength, and antibacterial activity to provide a variety of materials for different clinical situations. This in turn can reduce the risk of reinfection and allow placement of the final restoration in a single visit.


Subject(s)
Anti-Bacterial Agents , Calcium , Powders , Anti-Bacterial Agents/pharmacology , Bone Cements/pharmacology , Glass Ionomer Cements , Oxides/pharmacology
7.
J Conserv Dent ; 26(3): 344-348, 2023.
Article in English | MEDLINE | ID: mdl-37398867

ABSTRACT

Introduction: The objective of this in vitro study was to examine the impact of different endodontic chelating agents on the flexural strength and microhardness of root dentin. Materials and Methods: Fourty dentin sticks of (1 mm × 1 mm × 12 mm) were obtained from 10 single-rooted premolars and divided into four groups (n = 10). One stick from each tooth was assigned to one of the experimental groups and was soaked in one of the experimental chelating solutions for 5 min 17% ethylenediaminetetraacetic acid (EDTA), 2.5% phytic acid (PA), 18% etidronic acid, or saline (control group). Following the 5-min soak, the sticks' flexural strength was evaluated using a 3-point loading test using the universal testing machine, and the surface microhardness was tested using a Vickers's microhardness tester. Results: PA (2.5%) and etidronic acid (18%) showed no significant detrimental effect on either the flexural strength or the surface microhardness of radicular dentin compared to the control. EDTA (17%) exhibited a significant drop in the flexural strength and microhardness of radicular dentin compared to the other groups. Conclusions: PA and etidronic acid chelators do not compromise the surface and bulk mechanical properties of radicular dentin.

8.
J Clin Med ; 12(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36983344

ABSTRACT

BACKGROUND: There is tendency for unavoidable sealer extrusion in some clinical cases. This might adversely affect host stem cells and affect healing. This study aimed to investigate the effect of different sealers on the cytocompatibility and osteogenic potential of human periodontal ligament stem cells (hPDLSCs). METHODS: The cytotoxic effect of the extracted elutes of VDW.1Seal (VDW.1), Endosequence BC Sealer HiFlow (ES), GuttaFlow-2 (GF), and ADSeal (AD-S) on the hPDLSCs was determined using the MTT assay. Cell proliferation and migration were assessed by the scratch wound healing assay. Osteogenic differentiation potential was assessed. Measurement of pH values and calcium ions release was performed. RESULTS: GF had a significantly higher percentage of viable cells. The cell migration assay showed that GF demonstrated the lowest open wound area percentage. GF and AD-S showed the highest calcium nodule deposition. GF demonstrated higher ALP activity than ES. Expression of RUNX2 and OC genes was similar for all sealers, while OPG gene expression was significantly higher for VDW.1 and GF. ES and AD-S displayed the highest pH values on day 1. Calcium ion release of ES and VDW.1 was significantly the highest. CONCLUSIONS: GuttaFlow-2 and VDW.1Seal sealers have favorable behavior toward host stem cells.

9.
J Chem Neuroanat ; 128: 102234, 2023 03.
Article in English | MEDLINE | ID: mdl-36640914

ABSTRACT

Alzheimer's disease (AD) is one of the neurodegenerative illnesses that impair individual life & increase the demand for caregivers with no available curative medication right now. Therefore, there is a growing concern about employing herbal medicine to limit AD progression & improve patients' life quality, thus potentiating its add-on therapy. In addition, herbs are cost-effective & accessible with nearly no side effects. In the same vein, our study aimed to investigate the potency of Echinacea purpurea (EP) flower extracts to ameliorate the neurodegenerative effect of Aluminum chloride (AlCl3) in a rat model. Moreover, mechanistic studies, including impact on the cholinesterase activity, redox status, inflammatory mediators, behavior performance, glucose level & histopathology, were carried on. Our results showed that 250 mg/kg of Aqueous (AQ) & Alcoholic (AL) extracts of EP inhibited cholinesterase, restored oxidative balance, down-regulated IL-6 & TNF-α cytokines & improved behavior performance in vivo that was reflected in the brain picture by decreasing neuronal degeneration & amyloid plaques in cerebral cortex & hippocampus. The potency of both extracts was compared to reference drugs & AlCl3 positive control group. The AQ extract showed greater potency against COX-1, COX-2 & α-amylase in vitro, while the AL extract was more potent against cholinesterase in vitro, inflammatory cytokines, behavior & pathological improvement in vivo. Conclusively EP overcame AlCl3-induced neurobehavioral toxicity in the rat model via different pathways, which support its regular administration to postpone progressive neural damage in AD patients.


Subject(s)
Alzheimer Disease , Echinacea , Animals , Rats , Aluminum Chloride , Alzheimer Disease/metabolism , Cholinesterases , Cytokines/metabolism , Echinacea/metabolism , Plant Extracts/pharmacology
10.
J Adhes Dent ; 14(3): 265-74, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22282757

ABSTRACT

PURPOSE: To evaluate both the immediate and water-stored repair tensile bond strength (TBS) of a nanohybrid resin composite using different bonding protocols. MATERIALS AND METHODS: One hundred sixty half hourglass-shaped slabs were prepared. Eighty half-slabs were wet ground immediately after light curing using high-speed abrasive burs, while the other half-slabs were stored in water for one month (delayed) and then wet ground for repair. Each set of the 80 repaired slabs was split into two groups to be tested for TBS after 24 h or 1 month of water storage. For all repaired slabs, either immediate or delayed, four bonding procedures were used involving wet and dry bonding with a 3-step etch-and-rinse adhesive with or without silane pretreatment. TBS tests were performed at a crosshead speed of 0.5 mm/min. To determine the cohesive strength of the resin composite itself, which served as the reference, additional whole slabs were prepared and tested in tension after a 24-h (n = 10) and a 1-month storage period (n = 10). Failure modes were evaluated using a stereomicroscope at 40X magnification. Three-way ANOVA was run to test the effect of water storage, testing time, bonding protocols, and their interactions on the repair TBS, which was given as a percentage of the reference values. RESULTS: For the immediate repair groups, the repair TBS ranged from 40% to 61.9% after 24-h storage and from 26% to 53.1% after 1-month water storage compared to the TBS of the whole slabs. For the delayed repair group, the repaired TBS ranged from 47.2% to 63.6% for the 24-h repairs and from 32.2% to 44.2% for the test groups stored in water for 1 month. Three-way ANOVA revealed that water storage had no significant effect on the repair TBS (p = 0.619). Both testing time and bonding protocols had a significant effect on the repair TBS (p = 0.001). The interactions between the independent variables (water storage, testing time, and bonding protocols) had no significant effect (p = 0.067). CONCLUSION: The repair bond strength was consistently and highly significantly less than the cohesive strength of the composite. A delay of 1 month before carrying out the repair had no effect on the bond strength, irrespective of the bonding procedure used. Silane treatment did not improve the repair bond strength. In all instances, except for the immediate wet bonding plus silane procedure and delayed dry bonding, the bond strength of the repairs significantly dropped after 1 month of storage in water.


Subject(s)
Composite Resins , Dental Bonding/methods , Dental Restoration Repair , Dental Stress Analysis , Drug Storage , Materials Testing , Microscopy, Electron, Scanning , Nanocomposites , Silanes , Tensile Strength , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...