Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 2(5): 333-7, 2003 May.
Article in English | MEDLINE | ID: mdl-12692535

ABSTRACT

We present findings on the structure, energies and behaviour of defects in irradiated graphitic carbon materials. Defect production due to high-energy nuclear radiations experienced in graphite moderators is generally associated with undesirable changes in internal energy, microstructure and physical properties--the so-called Wigner effect. On the flip side, the controlled introduction and ability to handle such defects in the electron beam is considered a desirable way to engineer the properties of carbon nanostructures. In both cases, the atomic-level details of structure and interaction are only just beginning to be understood. Here, using a model system of crystalline graphite, we show from first-principles calculations, new details in the behaviour of vacancy and interstitial defects. We identify a prominent barrier-state to energy release, reveal a surprising ability of vacancy defects to bridge the widely spaced atomic layers, and discuss physical property and microstructure changes during irradiation, including interactions with dislocations.

SELECTION OF CITATIONS
SEARCH DETAIL
...