Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 14265, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652988

ABSTRACT

Utilizing Glutaraldehyde crosslinked sodium carboxymethyl cellulose (CMC-GA) hydrogel and its nanographene oxide composite (CMC-GA-GOx), an effective carboxymethyl cellulose-graphene oxide biobased composites adsorbent was developed for the adsorption removal of methylene blue (MB) cationic dye contaminate from industrial wastewater. The CMC-GA-GOx composites developed were characterized using FTIR, RAMAN, TGA, SEM, and EDX analysis instruments. Through batch experiments, several variables affecting the removal of MB dye, including the biocomposites GO:CMC composition, adsorption time, pH and temperature, initial MB concentration, adsorbent dosage, and NaCl concentration, were investigated under different conditions. The maximum dye removal percentages ranged between 93 and 98%. They were obtained using biocomposites CMC-GA-GO102 with 20% GO weight percent, adsorption time 25 min, adsorption temperature 25 °C, MB concentrations 10-30 ppm, adsorption pH 7.0, and 0.2 g adsorbent dose. The experimental data of the adsorption process suit the Langmuir isotherm more closely with a maximal monolayer adsorption capacity of 76.92 mg/g. The adsorption process followed the kinetic model of pseudo-second order. The removal of MB was exothermic and spontaneous from a thermodynamic standpoint. In addition, thermodynamic results demonstrated that adsorption operates most effectively at low temperatures. Finally, the reusability of the developed CMC-GA-GO102 has been proved through 10 successive cycles where only 14% of the MB dye removal percentage was lost. These results suggest that the developed CMC-GA-GO102 composite may be an inexpensive and reusable adsorbent for removing organic cationic dyes from industrial wastewater.

2.
Pharmaceutics ; 15(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242760

ABSTRACT

Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-ß1 (TGF-ß1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model.

3.
Polymers (Basel) ; 14(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35808634

ABSTRACT

The main aim of this work is to treat sugarcane bagasse agricultural waste and prepare an efficient, promising, and eco-friendly adsorbent material. Biochar is an example of such a material, and it is an extremely versatile and eco-friendly biosorbent to treat wastewater. Crystal violet (CV)-dye and methylene blue (MB)-dye species are examples of serious organic pollutants. Herein, biochar was prepared firstly from sugarcane bagasse (SCB), and then a biochar biosorbent was synthesized through pyrolysis and surface activation with NaOH. SEM, TEM, FTIR, Raman, surface area, XRD, and EDX were used to characterize the investigated materials. The reuse of such waste materials is considered eco-friendly in nature. After that, the adsorption of MB and CV-species from synthetically prepared wastewater using treated biochar was investigated under various conditions. To demonstrate the study's effectiveness, it was attempted to achieve optimum effectiveness at an optimum level by working with time, adsorbent dose, dye concentration, NaCl, pH, and temperature. The number of adsorbed dyes reduced as the dye concentrations increased and marginally decreased with NaCl but increased with the adsorbent dosage, pH, and temperature of the solution increased. Furthermore, it climbed for around 15 min before reaching equilibrium, indicating that all pores were almost full. Under the optimum condition, the removal perecentages of both MB and CV-dyes were ≥98%. The obtained equilibrium data was represented by Langmuir and Freundlich isotherm models. Additionally, the thermodynamic parameters were examined at various temperatures. The results illustrated that the Langmuir isotherm was utilized to explain the experimental adsorption processes with maximum adsorption capacities of MB and CV-dyes were 114.42 and 99.50 mgg-1, respectively. The kinetic data were estimated by pseudo-first and pseudo-second-order equations. The best correlation coefficients of the investigated adsorption processes were described by the pseudo-second-order kinetic model. Finally, the data obtained were compared with some works published during the last four years.

SELECTION OF CITATIONS
SEARCH DETAIL
...