Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 14(1): 47, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32789299

ABSTRACT

Based on solutions of the Ornstein-Zernike equation (OZE) of Lennard-Jones potential for mean spherical approximation (MSA), we derive analytical formula for the compressibility assuming that the system is of low density, homogeneous, isotropic and composed of one component. Depending on this formula, we find the values of the bulk modulus and the compressibility of air at room temperature and the bulk modulus and the compressibility of Methane, Ethylene, Propylene and Propane at nine per ten of critical temperature of each hydrocarbon. Also, we find the speed of sound in the air at various temperatures, the speed of sound in each of Helium, Neon, Argon, Krypton, Xenon, Methane, Ethylene, Propylene, Propane, Hydrogen, Nitrogen, Fluorine, Chlorine, Oxygen, Nitrous oxide (laughing gas), Carbon dioxide, Nitric oxide, Carbon monoxide, Sulphur dioxide and dichlorodifluoromethane at room temperature. Besides, we find the speed of sound in Methane, Ethylene, Propylene and Propane at nine per ten of critical temperature of each hydrocarbons depending on the formula we find. We show that the simple formula we derive in this work is reliable and agrees with the results obtained from other studies and literatures. We believe it can be used for many systems which are in low densities and described by Lennard-Jones potential.

2.
Heliyon ; 6(7): e04495, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32715142

ABSTRACT

In this study, we apply the definition of one of the fractional derivatives definitions of increasing values of the variable, which is the fractional derivative of Riemann-Liouville, and the numerical-integral methods to find numerical solutions of the fractional Schrödinger equation with the time-independent form for Van Der Walls potential type. We use the dimensionless formalism of the fractional Schrödinger equation in the space-dependent form in case of London dispersion potential in the stationary state. The solutions are found for multiple values of the space-dependent fractional Schrödinger equation parameter with a certain value of the energy. We find that the numerical solutions are physically acceptable for some values of the space dependent fractional parameter of the fractional Schrödinger equation but are not physically acceptable for others for a specific case. The numerical solutions can be applied for the systems that obey London dispersion potential type, which is resulted from the polarization of the instantaneous multi-poles of two moieties, such as soft materials systems and fluids of the inert gases.

3.
Appl Opt ; 51(32): 7877-82, 2012 Nov 10.
Article in English | MEDLINE | ID: mdl-23142903

ABSTRACT

This paper introduces a new modification for the well-known binary detour phase method, which is largely used to represent Fourier holograms; the modification utilizes gray scale level control provided by a liquid crystal spatial light modulator to improve the traditional binary detour phase. Results are shown by both simulation and experiment.

SELECTION OF CITATIONS
SEARCH DETAIL
...