Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Biomass Convers Biorefin ; : 1-15, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35070632

ABSTRACT

It is well known that biogenic synthesis, as compared to other processes, has proven to be highly effective in the fabrication of silver nanoparticles (AgNPs). Thus, our current study focused on synthesizing AgNPs using coffee waste extract (CWE). CWE contains many compounds identified by HPLC, which reduce, cap, and stabilize AgNPs in its solution. The as-synthesized AgNPs were produced with a monodispersed small size around 20 nm and exhibited in-plane dipole plasmon resonances of hexagonal nanoplates. AgNPs were characterized by both physical and spectroscopic methods, which confirmed their nanoscale dimensions with a hexagonal shape. The as-prepared AgNPs (12 mg) enabled the photodegradation of phenol compounds (20 mL) with a removal efficiency of ~ 94.6% in a short time in the presence of citric acid. Additionally, the second promising application of AgNPs was the tendency to remove the hazard 2,4 dinitroaniline (2,4 DNA) with a percent more than 97% while using only 7 mg of AgNPs. Moreover, the green synthesized AgNPs are superior in inhibiting bacterial growth and killing most infected microbes such as B. subtilis, P. aeruginosa, S. aureus, and E. coli. The electrochemical characteristics of the AgNPs were evaluated using a three-electrode system. The calculated specific capacitance was 280 F g-1 at 0.56 A g-1. Furthermore, after 1000 cycles at 2.2 A g-1, the AgNPs electrode demonstrates an excellent cycling stability behavior with 94.8% capacitance retention. Based on the previous promising results, it can be concluded that CWE is an environmentally benign extract to prepare AgNPs with low cost, saving and easily used for many great domains in photocatalytic, phenol compound removals, and production of functional nanodevices.

3.
Int J Biol Macromol ; 167: 1176-1197, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33197477

ABSTRACT

Recent advancements in the synthesis, properties, and applications of chitosan as the second after cellulose available biopolymer in nature were discussed in this review. A general overview of processing and production procedures from A to Z was highlighted. Chitosan exists in three polymorphic forms which differ in degree of crystallinity (α, ß, and γ). Thus, the degree of deacetylation, crystallinity, surface area, and molecular mass significantly affect most applications. Otherwise, the synthesis of chitosan nanofibers is suffering from many drawbacks that were recently treated by co-electrospun with other polymers such as polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polycaprolactone (PCL). Ultimately, this review focuses on the area of new trend utilization of chitosan nanoparticles as nanospheres and nanocapsules, in cartilage and bone regenerative medicine. Owing to its biocompatibility, bioavailability, biodegradability, and costless synthesis, chitosan is a promising biopolymeric structure for water remediation, drug delivery, antimicrobials, and tissue engineering.


Subject(s)
Bioprinting/methods , Chitosan/chemistry , Chitosan/pharmacology , Drug Delivery Systems/methods , Nanocapsules/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Tissue Engineering/methods , Anti-Infective Agents/pharmacology , Biocompatible Materials/chemistry , Nanocapsules/ultrastructure , Nanoparticles/ultrastructure , Solubility , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...