Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Mol Biotechnol ; 66(5): 1144-1153, 2024 May.
Article in English | MEDLINE | ID: mdl-38184809

ABSTRACT

AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.


Subject(s)
Eremothecium , Oxidative Stress , Reactive Oxygen Species , Riboflavin , Sirtuins , Riboflavin/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Eremothecium/genetics , Eremothecium/metabolism , Reactive Oxygen Species/metabolism , Mutation , Fungal Proteins/genetics , Fungal Proteins/metabolism , NAD/metabolism , Antioxidants/metabolism , Gene Expression Regulation, Fungal , Glutathione Reductase/genetics , Glutathione Reductase/metabolism
2.
Microb Cell Fact ; 22(1): 105, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217979

ABSTRACT

BACKGROUND: Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria. RESULTS: In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain. CONCLUSION: The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.


Subject(s)
Acetolactate Synthase , Eremothecium , Flavoproteins , Mutation , Riboflavin , Riboflavin/biosynthesis , Riboflavin/metabolism , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Eremothecium/drug effects , Eremothecium/enzymology , Eremothecium/genetics , Eremothecium/growth & development , Eremothecium/metabolism , Flavoproteins/genetics , Flavoproteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Amino Acids, Branched-Chain/pharmacology
3.
Saudi J Biol Sci ; 29(4): 2299-2305, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531197

ABSTRACT

Background: The human transcriptome across a variety of cell types and tissues are affected by stress and other psychological factors. Preksha Dhyana meditation (PM) is effective at improving cognitive skills in novice healthy college student meditators after 8 weeks of intervention, but the molecular and cellular mechanisms involved in these improvements are still largely unknown. Methods: In order to decipher potential mechanisms at the cellular level, transcriptomic profiling analyses, from peripheral blood, were performed at baseline and 8 weeks post-intervention in 18-paired participants (RNASeq). Results: At the transcriptomic level, 494 genes were nominally differentially expressed (p-value ≤ 0.05) between baseline and 8 weeks post-intervention. Our data showed that 136 genes were upregulated, while 358 genes were downregulated. These genes were enriched in several cellular pathways including innate and adaptive immunity, cell signaling, and other metabolic processes. Conclusions: Overall, our findings indicate that PM meditation affects gene expression patterns from whole blood in novice healthy college students. Improvements at the cognitive skills were also mirrored with changes at RNA expression profiling.

4.
Environ Sci Pollut Res Int ; 29(7): 9792-9804, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34508308

ABSTRACT

A large amount of ammonia volatilization from the agricultural system causes environmental problems and increases production costs. Conservation agriculture has emerged as an alternate and sustainable crop production system. Therefore, in the present study, ammonia losses from different agricultural practices were evaluated for the wheat crop under different tillage practices. The results of the present study showed that the cumulative emission of ammonia flux from the wheat field varied from 6.23 to 24.00 kg ha-1 (P ≤ 0.05) in conservation tillage (CA) and 7.03 to 26.58 kg ha-1 (P ≤ 0.05) in conventional tillage (CT) among different treatments. Application of basal 80% nitrogen resulted in the highest ammonia flux in conventional and conservation tillage practices. The ammonia volatilization followed the following trend: urea super granules with band placement > neem-coated urea with band placement > neem-coated urea with broadcast before irrigation > neem-coated urea with broadcast after irrigation > slow-release N fertilizer (urea stabilized with DCD and N(n-butyl)thiophosphoric triamide) with band placement. The conservation agricultural practices involving conservation tillage appear to be a sustainable approach for minimizing ammonia volatilization and improving wheat productivity.


Subject(s)
Ammonia , Triticum , Agriculture , Ammonia/analysis , Fertilizers/analysis , Nitrogen/analysis , Soil , Volatilization
5.
J Appl Microbiol ; 132(2): 1176-1184, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34496097

ABSTRACT

AIMS: Effects of a proteasome inhibitor, MG-132, on the riboflavin production in Ashbya gossypii were investigated to elucidate the relationship of the riboflavin production with flavoprotein homeostasis. METHODS AND RESULTS: The addition of MG-132 to the liquid medium reduced the specific riboflavin production by 79% in A. gossypii at 25 µM after 24 h. The addition of the inhibitor also caused the accumulation of reactive oxygen species and ubiquitinated proteins. These results indicated that MG-132 works in A. gossypii without any genetic engineering and reduces riboflavin production. In the presence of 25 µM MG-132, specific NADH dehydrogenase activity was increased by 1.4-fold compared to DMSO, but specific succinate dehydrogenase (SDH) activity was decreased to 52% compared to DMSO. Additionally, the amount of AgSdh1p (ACR052Wp) was also reduced. Specific riboflavin production was reduced to 22% when 20 mM malonate, a SDH inhibitor, was added to the culture medium. The riboflavin production in heterozygous AgSDH1 gene-disrupted mutant (AgSDH1-/+ ) was reduced to 63% compared to that in wild type. CONCLUSIONS: MG-132 suppresses the riboflavin production and SDH activity in A. gossypii. SDH is one of the flavoproteins involved in the riboflavin production in A. gossypii. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows that MG-132 has a negative influence on the riboflavin production and SDH activity in A. gossypii and leads to the elucidation of the connection of the riboflavin production with flavoproteins.


Subject(s)
Proteasome Inhibitors , Riboflavin , Saccharomycetales/metabolism , Genetic Engineering , Leupeptins/pharmacology , Proteasome Inhibitors/pharmacology , Riboflavin/biosynthesis , Saccharomycetales/drug effects
6.
Saudi J Biol Sci ; 28(11): 6339-6351, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34759753

ABSTRACT

Zinc (Zn) is an essential micronutrient required to enhance crop growth and yield. In the arid - semiarid region, Zn deficiency is expected due to alkaline calcareous soil. Contrarily, Zn toxicity is also becoming an environmental concern due to increasing anthropogenic activities (metal smelting, copper industry, etc.). Therefore, balanced Zn application is necessary to save resources and achieve optimum crop growth and yield. Most scientists suggest biological approaches to overcome the problem of Zn toxicity and deficiency. These biological approaches are mostly environment-friendly and cost-effective. In these biological approaches, the use of arbuscular mycorrhizae fungi (AMF) symbiosis is becoming popular. It can provide tolerance to the host plant against Zn-induced stress. Inoculation of AMF helps in balance uptake of Zn and enhances the growth and yield of crops. On the other hand, maize (Zea mays L.) is an important cereal crop due to its multifarious uses. As maize is an effective host for mycorrhizae symbiosis, that's why this review was written to elaborate on the beneficial role of arbuscular mycorrhizal fungi (AMF). The review aimed to glance at the recent advances in the use of AMF to enhance nutrient uptake, especially Zn. It was also aimed to discuss the mechanism of AMF to overcome the toxic effect of Zn. We have also discussed the detailed mechanism and physiological improvement in the maize plant. In conclusion, AMF can play an imperative role in improving maize growth, yield, and balance uptake of Zn by alleviating Zn stress and mitigating its toxicity.

7.
Molecules ; 26(19)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34641302

ABSTRACT

Soil potassium (K) supplement depends intensively on the application of chemical fertilizers, which have substantial harmful environmental effects. However, some bacteria can act as inoculants by converting unavailable and insoluble K forms into plant-accessible forms. Such bacteria are an eco-friendly approach for enhancing plant K absorption and consequently reducing utilization of chemical fertilization. Therefore, the present research was undertaken to isolate, screen, and characterize the K solubilizing bacteria (KSB) from the rhizosphere soils of northern India. Overall, 110 strains were isolated, but only 13 isolates showed significant K solubilizing ability by forming a halo zone on solid media. They were further screened for K solubilizing activity at 0 °C, 1 °C, 3 °C, 5 °C, 7 °C, 15 °C, and 20 °C for 5, 10, and 20 days. All the bacterial isolates showed mineral K solubilization activity at these different temperatures. However, the content of K solubilization increased with the upsurge in temperature and period of incubation. The isolate KSB (Grz) showed the highest K solubilization index of 462.28% after 48 h of incubation at 20 °C. The maximum of 23.38 µg K/mL broth was solubilized by the isolate KSB (Grz) at 20 °C after 20 days of incubation. Based on morphological, biochemical, and molecular characterization (through the 16S rDNA approach), the isolate KSB (Grz) was identified as Mesorhizobium sp. The majority of the strains produced HCN and ammonia. The maximum indole acetic acid (IAA) (31.54 µM/mL) and cellulase (390 µM/mL) were produced by the isolate KSB (Grz). In contrast, the highest protease (525.12 µM/mL) and chitinase (5.20 µM/mL) activities were shown by standard strain Bacillus mucilaginosus and KSB (Gmr) isolate, respectively.


Subject(s)
Mesorhizobium/growth & development , Plant Growth Regulators/metabolism , Potassium/chemistry , Sequence Analysis, DNA/methods , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Mesorhizobium/classification , Mesorhizobium/isolation & purification , Mesorhizobium/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Secondary Metabolism , Soil Microbiology , Solubility , Temperature
8.
Appl Microbiol Biotechnol ; 105(20): 7813-7823, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34559286

ABSTRACT

This study focuses on sirtuins, which catalyze the reaction of NAD+-dependent protein deacetylase, for riboflavin production in A. gossypii. Nicotinamide, a known inhibitor of sirtuin, made the color of A. gossypii colonies appear a deeper yellow at 5 mM. A. gossypii has 4 sirtuin genes (AgHST1, AgHST2, AgHST3, AgHST4) and these were disrupted to investigate the role of sirtuins in riboflavin production in A. gossypii. AgHST1∆, AgHST3∆, and AgHST4∆ strains were obtained, but AgHST2∆ was not. The AgHST1∆ and AgHST3∆ strains produced approximately 4.3- and 2.9-fold higher amounts of riboflavin than the WT strain. The AgHST3∆ strain showed a lower human sirtuin 6 (SIRT6)-like activity than the WT strain and only in the AgHST3∆ strain was a higher amount of acetylation of histone H3 K9 and K56 (H3K9ac and H3K56ac) observed compared to the WT strain. These results indicate that AgHst3 is SIRT6-like sirtuin in A. gossypii and the activity has an influence on the riboflavin production in A. gossypii. In the presence of 5 mM hydroxyurea and 50 µM camptothecin, which causes DNA damage, especially double-strand DNA breaks, the color of the WT strain colonies turned a deeper yellow. Additionally, hydroxyurea significantly led to the production of approximately 1.5 higher amounts of riboflavin and camptothecin also enhanced the riboflavin production even through the significant difference was not detected. Camptothecin tended to increase the amount of H3K56ac, but the amount of H3K56ac was not increased by hydroxyurea treatment. This study revealed that AgHst1 and AgHst3 are involved in the riboflavin production in A. gossypii through NAD metabolism and the acetylation of H3, respectively. This new finding is a step toward clarifying the role of sirtuins in riboflavin over-production by A. gossypii.Key points• Nicotinamide enhanced the riboflavin production in Ashbya gossypii.• Disruption of AgHST1 or AgHST3 gene also enhanced the riboflavin production in Ashbya gossypii.• Acetylation of H3K56 led to the enhancement of the riboflavin production in Ashbya gossypii.


Subject(s)
Eremothecium , Riboflavin/biosynthesis , Sirtuins , DNA Damage , Eremothecium/genetics , Sirtuins/genetics
9.
Molecules ; 26(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809305

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


Subject(s)
Bacillus cereus/physiology , Chromium/pharmacokinetics , Mustard Plant/metabolism , Mustard Plant/microbiology , Soil Pollutants/pharmacokinetics , Antioxidants/metabolism , Bacillus cereus/genetics , Biodegradation, Environmental , Chlorophyll/metabolism , Genes, Bacterial , Mustard Plant/growth & development , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/physiology , Soil Microbiology , Stress, Physiological , Symbiosis
10.
Molecules ; 26(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810565

ABSTRACT

Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.


Subject(s)
Antioxidants/metabolism , Klebsiella/metabolism , Rhizosphere , Salt Stress , Soil Microbiology , Triticum/microbiology , Oxidative Stress
11.
BMC Genomics ; 21(1): 319, 2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32326906

ABSTRACT

BACKGROUND: Ashbya gossypii naturally overproduces riboflavin and has been utilized for industrial riboflavin production. To improve riboflavin production, various approaches have been developed. In this study, to investigate the change in metabolism of a riboflavin-overproducing mutant, namely, the W122032 strain (MT strain) that was isolated by disparity mutagenesis, genomic analysis was carried out. RESULTS: In the genomic analysis, 33 homozygous and 1377 heterozygous mutations in the coding sequences of the genome of MT strain were detected. Among these heterozygous mutations, the proportion of mutated reads in each gene was different, ranging from 21 to 75%. These results suggest that the MT strain may contain multiple nuclei containing different mutations. We tried to isolate haploid spores from the MT strain to prove its ploidy, but this strain did not sporulate under the conditions tested. Heterozygous mutations detected in genes which are important for sporulation likely contribute to the sporulation deficiency of the MT strain. Homozygous and heterozygous mutations were found in genes encoding enzymes involved in amino acid metabolism, the TCA cycle, purine and pyrimidine nucleotide metabolism and the DNA mismatch repair system. One homozygous mutation in AgILV2 gene encoding acetohydroxyacid synthase, which is also a flavoprotein in mitochondria, was found. Gene ontology (GO) enrichment analysis showed heterozygous mutations in all 22 DNA helicase genes and genes involved in oxidation-reduction process. CONCLUSION: This study suggests that oxidative stress and the aging of cells were involved in the riboflavin over-production in A. gossypii riboflavin over-producing mutant and provides new insights into riboflavin production in A. gossypii and the usefulness of disparity mutagenesis for the creation of new types of mutants for metabolic engineering.


Subject(s)
Eremothecium/genetics , Genome, Fungal/genetics , Genomics/methods , Mutation , Riboflavin/metabolism , Acetolactate Synthase/genetics , Citric Acid Cycle/genetics , DNA Mismatch Repair/genetics , Eremothecium/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genotype , Metabolic Engineering/methods , Mutagenesis
12.
Biomolecules ; 9(12)2019 12 12.
Article in English | MEDLINE | ID: mdl-31842491

ABSTRACT

The inexhaustible nature and biodegradability of bioplastics like polyhydroxyalkanoates (PHAs) make them suitable assets to replace synthetic plastics. The eventual fate of these eco-friendly and non-toxic bioplastics relies upon the endeavors towards satisfying cost and, in addition, execution necessity. In this study, we utilized and statistically optimized different food (kitchen-/agro-) waste as a sole carbon/nitrogen source for the production of PHA at a reduced cost, indicating a proficient waste administration procedure. Seven different types of kitchen-/agro-waste were used as unique carbon source and four different types of nitrogen source were used to study their impact on PHA production by Bacillus subtilis MTCC 144. Among four different studied production media, mineral salt medium (MSM) (biomass: 37.7 g/L; cell dry weight: 1.8 g/L; and PHA: 1.54 g/L) was found most suitable for PHA production. Further, carbon and nitrogen components of MSM were optimized using one-factor-at-a-time experiments, and found that watermelon rind (PHA = 12.97 g/L) and pulse peel (PHA = 13.5 g/L) were the most suitable carbon and nitrogen sources, respectively, in terms of PHA (78.60%) recovery. The concentrations of these factors (sources) were statistically optimized using response surface methodology coupled with the genetic algorithm approach. Additionally, in order to enhance microbial PHA production, the interaction of citrate synthase, a key enzyme in the TCA cycle, with different known inhibitors was studied using in silico molecular docking approach. The inhibition of citrate synthase induces the blockage of the tricarboxylic cycle (TCA), thereby increasing the concentration of acetyl-CoA that helps in enhanced PHA production. Molecular docking of citrate synthase with different inhibitors of PubChem database revealed that hesperidin (PubChem compound CID ID 10621), generally present in citrus fruits, is the most efficient inhibitor of the TCA cycle with the binding score of -11.4 and warrants experimental validation. Overall, this study provides an efficient food waste management approach by reducing the production cost and enhancing the production of PHA, thereby lessening our reliance on petroleum-based plastics.


Subject(s)
Bacillus subtilis/enzymology , Citrate (si)-Synthase/metabolism , Polyhydroxyalkanoates/biosynthesis , Algorithms , Polyhydroxyalkanoates/genetics , Polyhydroxyalkanoates/metabolism , Surface Properties
13.
Biomolecules ; 9(12)2019 11 21.
Article in English | MEDLINE | ID: mdl-31766572

ABSTRACT

Nanoparticles (NPs) possessing antibacterial activity represent an effective way of overcoming bacterial resistance. In the present work, we report a novel formulation of a nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). 'ZnO NP-Ams' nanoantibiotic formulation is optimized using response surface methodology coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 µg/mL; Ams: 33.6 µg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low minimum inhibitory concentration (6.25 µg/mL) of nanoantibiotic formulation reveals that even a low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance of nanoantibiotic formulation is also evident by the fact that the 100 µg/mL of Ams and 25 µg of ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 µg/mL of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in µg/mL and conjugation time of 27 h) was needed for the same.


Subject(s)
Algorithms , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Sulbactam/pharmacology , Zinc Oxide/pharmacology , Bacteria/drug effects , Bacteria/ultrastructure , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Regression Analysis
14.
Microorganisms ; 7(12)2019 Nov 23.
Article in English | MEDLINE | ID: mdl-31771141

ABSTRACT

Multifunctionalities linked with the microbial communities associated with the millet crop rhizosphere has remained unexplored. In this study, we are analyzing microbial communities inhabiting rhizosphere of kodo millet and their associated functions and its impact over plant growth and survival. Metagenomics of Paspalum scrobiculatum L.(kodo millet) rhizopshere revealed taxonomic communities with functional capabilities linked to support growth and development of the plants under nutrient-deprived, semi-arid and dry biotic conditions. Among 65 taxonomically diverse phyla identified in the rhizobiome, Actinobacteria were the most abundant followed by the Proteobacteria. Functions identified for different genes/proteins led to revelations that multifunctional rhizobiome performs several metabolic functions including carbon fixation, nitrogen, phosphorus, sulfur, iron and aromatic compound metabolism, stress response, secondary metabolite synthesis and virulence, disease, and defense. Abundance of genes linked with N, P, S, Fe and aromatic compound metabolism and phytohormone synthesis-along with other prominent functions-clearly justifies growth, development, and survival of the plants under nutrient deprived dry environment conditions. The dominance of actinobacteria, the known antibiotic producing communities shows that the kodo rhizobiome possesses metabolic capabilities to defend themselves against biotic stresses. The study opens avenues to revisit multi-functionalities of the crop rhizosphere for establishing link between taxonomic abundance and targeted functions that help plant growth and development in stressed and nutrient deprived soil conditions. It further helps in understanding the role of rhizosphere microbiome in adaptation and survival of plants in harsh abiotic conditions.

15.
Front Cell Dev Biol ; 7: 165, 2019.
Article in English | MEDLINE | ID: mdl-31457012

ABSTRACT

Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.

16.
BMC Biotechnol ; 19(1): 46, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311527

ABSTRACT

BACKGROUND: Natamycin is an antifungal polyene macrolide antibiotic with wide applications in health and food industries. Currently, it is the only antifungal food additive with the GRAS status (Generally Regarded as Safe). RESULTS: Natamycin production was investigated under the effect of different initial glucose concentrations. Maximal antibiotic production (1.58 ± 0.032 g/L) was achieved at 20 g/L glucose. Under glucose limitation, natamycin production was retarded and the produced antibiotic was degraded. Higher glucose concentrations resulted in carbon catabolite repression. Secondly, intermittent feeding of glucose improved natamycin production due to overcoming glucose catabolite regulation, and moreover it was superior to glucose-beef mixture feeding, which overcomes catabolite regulation, but increased cell growth on the expense of natamycin production. Finally, the process was optimized in 7.5 L stirred tank bioreactor under batch and fed-batch conditions. Continuous glucose feeding for 30 h increased volumetric natamycin production by about 1.6- and 1.72-folds in than the batch cultivation in bioreactor and shake-flasks, respectively. CONCLUSIONS: Glucose is a crucial substrate that significantly affects the production of natamycin, and its slow feeding is recommended to alleviate the effects of carbon catabolite regulation as well as to prevent product degradation under carbon source limitation. Cultivation in bioreactor under glucose feeding increased maximal volumetric enzyme production by about 72% from the initial starting conditions.


Subject(s)
Batch Cell Culture Techniques/methods , Bioreactors , Natamycin/biosynthesis , Antifungal Agents/metabolism , Carbon/metabolism , Culture Media/chemistry , Culture Media/metabolism , Glucose/metabolism , Streptomyces/metabolism
17.
Sci Rep ; 9(1): 6482, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31019210

ABSTRACT

Arterial/venous thrombosis is the major cardiovascular disorder accountable for substantial mortality; and the current demand for antithrombotic agents is extensive. Heparinases depolymerize unfractionated heparin (UFH) for the production of low molecular-weight heparins (LMWHs; used as anticoagulants against thrombosis). A microbial strain of Streptomyces sp. showing antithrombotic activity was isolated from the soil sample collected from north India. The strain was characterized by using 16S rRNA homology technique and identified as Streptomyces variabilis MTCC 12266 capable of producing heparinase enzyme. This is the very first communication reporting Streptomyces genus as the producer of heparinase. It was observed that the production of intracellular heparinase was [63.8 U/mg protein (specific activity)] 1.58 folds higher compared to extracellular heparinase [40.28 U/mg protein]. DEAE-Sephadex A-50 column followed by Sepharose-6B column purification of the crude protein resulted 19.18 folds purified heparinase. SDS-PAGE analysis of heparinase resulted an estimated molecular-weight of 42 kDa. It was also found that intracellular heparinase has the ability to depolymerize heparin to generate LMWHs. Further studies related to the mechanistic action, structural details, and genomics involved in heparinase production from Streptomyces variabilis are warranted for large scale production/purification optimization of heparinase for antithrombotic applications.


Subject(s)
Bacterial Proteins/metabolism , Heparin Lyase/metabolism , Heparin, Low-Molecular-Weight/metabolism , Heparin/metabolism , Streptomyces/metabolism , Bacterial Proteins/isolation & purification , Chromatography/methods , DEAE-Dextran/analogs & derivatives , Electrophoresis, Polyacrylamide Gel , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Heparin/chemistry , Heparin Lyase/isolation & purification , Heparin, Low-Molecular-Weight/chemistry , India , Kinetics , Molecular Weight , Phylogeny , RNA, Ribosomal, 16S/genetics , Sepharose , Soil Microbiology , Streptomyces/classification , Streptomyces/genetics , Substrate Specificity
18.
Biomolecules ; 9(2)2019 01 29.
Article in English | MEDLINE | ID: mdl-30769763

ABSTRACT

Silver-based nanostructures are suitable for many biomedical applications, but to be useful therapeutic agents, the high toxicity of these nanomaterials must be eliminated. Here, we biosynthesize nontoxic and ultra-small silver nanoclusters (rsAg@NCs) using metabolites of usnioid lichen (a symbiotic association of algae and fungi) that exhibit excellent antimicrobial activity against fluconazole (FCZ)-resistant Candida albicans that is many times higher than chemically synthesized silver nanoparticles (AgNPs) and FCZ. The rsAg@NCs trigger apoptosis via reactive oxygen species accumulation that leads to the loss of mitochondrial membrane potential, DNA fragmentation, chromosomal condensation, and the activation of metacaspases. The proteomic analysis clearly demonstrates that rsAg@NCs exposure significantly alters protein expression. Most remarkable among the down-regulated proteins are those related to glycolysis, metabolism, free radical scavenging, anti-apoptosis, and mitochondrial function. In contrast, proteins involved in plasma membrane function, oxidative stress, cell death, and apoptosis were upregulated. Eventually, we also established that the apoptosis-inducing potential of rsAg@NCs is due to the activation of Ras signaling, which confirms their application in combating FCZ-resistant C. albicans infections.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Drug Resistance, Fungal/drug effects , Fluconazole/pharmacology , Metal Nanoparticles/chemistry , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Silver/metabolism , Antifungal Agents/chemistry , Candida albicans/cytology , Cell Death , Cell Survival/drug effects , Fluconazole/chemistry , Lichens/chemistry , Lichens/metabolism , Particle Size , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Silver/chemistry , Surface Properties
19.
J Biosci Bioeng ; 127(6): 655-662, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30795878

ABSTRACT

This study focused on kinetics of levan yield by Bacillus subtilis M, in a 150 L stirred tank bioreactor under controlled pH conditions. The optimized production medium was composed of (g/L): commercial sucrose 100.0, yeast extract 2.0, K2HPO4 3.0 and MgSO4⋅7H2O 0.2; an increase in both carbohydrates consumption and cell growth depended on increasing the size of the stirred tank bioreactor from 16 L to 150 L. The highest levansucrase production (63.4 U/mL) and levan yield of 47 g/L was obtained after 24 h. Also, the specific levan yield (Yp/x) which reflects the cell productivity increased with the size increase of the stirred tank bioreactor and reached its maximum value of about 29.4 g/g cells. These results suggested that B. subtilis M could play an important role in levan yield on a large scale in the future. Chemical modifications of B. subtilis M crude levan (CL) into sulfated (SL), phosphorylated (PL), and carboxymethylated levans (CML) were done. The difference in CL structure and its derivatives was detected by FT-IR transmission spectrum. The cytotoxicity of CL and its derivatives were evaluated by HepGII, Mcf-7 and CaCo-2. In general most tested levans forms had no significant cytotoxicity effect. In fact, the carboxymethylated and phosphrylated forms had a lower anti-cancer effect than CL. On the other hand, SL had the highest cytotoxicity showing SL had a significant anti-cancer effect. The results of cytotoxicity and cell viability were statistically analyzed using three-way ANOVA.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Bacillus subtilis/metabolism , Fructans/chemistry , Fructans/pharmacology , Antineoplastic Agents/metabolism , Bioreactors , Biotechnology , Cell Line, Tumor , Cell Proliferation/drug effects , Fructans/biosynthesis , Humans
20.
BMC Biotechnol ; 18(1): 71, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413198

ABSTRACT

BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020. RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h. CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.


Subject(s)
Aspergillus niger/metabolism , Batch Cell Culture Techniques/methods , Aspergillus niger/genetics , Aspergillus niger/growth & development , Batch Cell Culture Techniques/instrumentation , Bioreactors/microbiology , Carbon/metabolism , Culture Media/chemistry , Culture Media/metabolism , Fermentation , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...