Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Cell ; 83: 102156, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437332

ABSTRACT

The main goal of the current report is to assess the protective impacts of chia seeds against obesity-induced ovarian dysfunctions with a trial to elucidate the mechanism of action. Forty rats were divided into 4 groups including lean untreated, lean consuming chia seeds, obese untreated, and rats consumed high-fat diet (HFD) mixed with ground chia seeds for 10 weeks. Anthropometric measures including visceral fat, peri-ovarian fat, ovarian weights, and duration of the estrous cycle were computed. Serum luteinizing (LH), follicular stimulating (FSH), progesterone, estradiol hormones, and tumor necrosis-α (TNF-α) were estimated. Ovarian histopathology and immunohistochemistry (CD31) were performed. Results showed that chia seeds clearly reduced obesity and induced alteration in anthropometric measures with a clear increase in LH and progesterone. Such seeds notably reversed histopathological alteration and reduced TNF-α, and CD31 induced by HFD. Conclusively, chia seeds have a potential protective role against obesity-induced ovarian dysfunction owing to their anti-inflammatory properties.


Subject(s)
Salvia hispanica , Salvia , Rats , Animals , Tumor Necrosis Factor-alpha , Progesterone , Salvia/chemistry , Obesity/complications , Seeds/chemistry
2.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1797-1808, 2020 10.
Article in English | MEDLINE | ID: mdl-32388601

ABSTRACT

Insulin resistance is a worldwide health problem. This study investigated the acute effects of eicosapentanoic acid (EPA) on glucose homeostasis focusing on the role of free fatty acid receptor 1 (FFAR1) and the chronic effects of fish oil omega-3 fatty acids on insulin resistance. Insulin resistance was induced by feeding mice high-fructose, high-fat diet (HFrHFD) for 16 weeks. In the first part, the acute effects of EPA alone and in combination with GW1100 and DC260126 (FFAR1 blockers) on glucose homeostasis and hepatic phosphatidyl-inositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) were investigated in standard chow diet (SCD)- and HFrHFD-fed mice. In the second part, mice were treated with fish oil omega-3 fatty acids for 4 weeks starting at the week 13 of feeding HFrHFD. Changes in the blood- and liver tissue-insulin resistance markers and FFAR1 downstream signals were recorded at the end of experiment. Results showed that EPA increased 0 and 30 min blood glucose levels after glucose load in SCD-fed mice but improved glucose tolerance in HFrHFD-fed mice. Moreover, FFAR1 blockers reduced EPA effects on glucose tolerance and hepatic PIP2 and DAG levels. On the other hand, chronic use of fish oil omega-3 fatty acids increased FBG levels and decreased serum insulin and triglycerides levels without improving the index of insulin resistance. Also, they increased hepatic ß-arrestin-2, PIP2, and pS473 Akt levels but decreased DAG levels. In conclusion, EPA acutely improved glucose homeostasis in HFrHFD-fed mice by modulating the activity of FFAR1. However, the chronic use of fish oil omega-3 fatty acids did not improve the insulin resistance.


Subject(s)
Blood Glucose/drug effects , Blood Glucose/metabolism , Fatty Acids, Omega-3/pharmacology , Insulin Resistance/physiology , Receptors, G-Protein-Coupled/metabolism , Animals , Benzoates/pharmacology , Diet, High-Fat/adverse effects , Eicosapentaenoic Acid/pharmacology , Fructose/administration & dosage , Fructose/toxicity , Male , Mice , Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...