Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop ; 24: 216-221, 2021.
Article in English | MEDLINE | ID: mdl-33746422

ABSTRACT

BACKGROUND: Revision TKA is a serious adverse event with substantial consequences for the patient. As revision is becoming increasingly common in patients under 65 years, the need for improved preoperative patient selection is imminently needed. Therefore, this study aimed to identify the most important factors of early revision and to develop a prediction model of early revision including assessment of the effect of incorporating data on patient-reported outcome measures (PROMs). MATERIAL AND METHODS: A cohort of 538 patients undergoing primary TKA was included. Multiple logistic regression using forward selection of variables was applied to identify the best predictors of early revision and to develop a prediction model. The model was internally validated with stratified 5-fold cross-validation. This procedure was repeated without including data on PROMs to develop a model for comparison. The models were evaluated on their discriminative capacity using area under the receiver operating characteristic curve (AUC). RESULTS: The most important factors of early revision were age (OR 0.63 [0.42, 0.95]; P = 0.03), preoperative EQ-5D (OR 0.07 [0.01, 0.51]; P = 0.01), and number of comorbidities (OR 1.01 [0.97, 1.25]; P = 0.15). The AUCs of the models with and without PROMs were 0.65 and 0.61, respectively. The difference between the AUCs was not statistically significant (P = 0.32). CONCLUSIONS: Although more work is needed in order to reach a clinically meaningful quality of the predictions, our results show that the inclusion of PROMs seems to improve the quality of the prediction model.

2.
Exp Eye Res ; 128: 67-72, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25251883

ABSTRACT

The carbonic anhydrase inhibitor dorzolamide can induce relaxation of retinal arterioles with a consequent increase in blood flow and oxygenation of the retina. It has been shown that the mechanisms underlying this relaxation are independent of extracellular acidosis and CO2. The purpose of the present study was to investigate the possible involvement of nitric oxide (NO) and intracellular acidosis in dorzolamide-induced relaxation of retinal arterioles. Porcine retinal arterioles were mounted in a wire myograph and dorzolamide induced relaxation was studied after 1) the addition of the NO synthase inhibitor l-NAME (3 × 10(-4) M) or the guanylyl cyclase inhibitor ODQ (3 × 10(-6) M), and 2) after loading the smooth muscle cells with the pH sensitive fluorophore SNARF-1-AM and studying changes in vascular tone and intracellular fluorescence after the induction of hypoxia, addition of lactate (10(-2) M), and extracellular acidification (pH = 7.0) alone and in the presence of dorzolamide (10(-3) M). Dorzolamide significantly relaxed retinal arterioles (p < 0.03), and the effect was significantly higher in the presence of perivascular tissue than in isolated vessels at the highest concentration (p < 0.01). In the presence of perivascular tissue dorzolamide-induced relaxation could be reduced by NO inhibition (p < 0.02). Dorzolamide increased intracellular acidification (p < 0.02) during extracellular acidosis, but there was no relation between relaxation and intracellular acidosis. In conclusion, dorzolamide-induced vasorelaxation depends on NO and the perivascular retinal tissue, but is independent of acidification in the extracellular and the intracellular space of retinal vascular smooth muscle cells. Other factors than NO and acidification are involved in dorzolamide-induced relaxation of retinal arterioles.


Subject(s)
Acidosis/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Muscle, Smooth, Vascular/drug effects , Nitric Oxide/metabolism , Retinal Artery/physiology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Vasodilation/physiology , Animals , Arterioles/drug effects , Benzopyrans/metabolism , Bradykinin/pharmacology , Endothelium, Vascular/physiology , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/metabolism , Hydrogen-Ion Concentration , Lactates/pharmacology , Muscle, Smooth, Vascular/metabolism , Myography , NG-Nitroarginine Methyl Ester/pharmacology , Oxadiazoles/pharmacology , Quinoxalines/pharmacology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...