Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 111: 104827, 2021 06.
Article in English | MEDLINE | ID: mdl-33798845

ABSTRACT

A new set of derivatives bearing pyrazole-methylenehydrazono-thiazolidinone scaffold 4-23 was designed, synthesized and confirmed by different spectroscopic means and elemental analyses. In-vivo anti-inflammatory and ulcerogenic evaluation was performed for all the newly synthesized derivatives using indomethacin, celecoxib and diclofenac as standard drugs. The compounds 5, 10, 15, 17, 21, 22 appeared to be the most promising candidates producing rapid onset and long duration of anti-inflammatory activity as well as promising GIT safety profile. Furthermore, analgesic evaluation revealed that the compounds 5, 10, 15 and 22 produced potent and long acting analgesia accompanied with significant inhibition of the inflammatory cytokine TNF-α level in comparison with the standard drugs. Molecular docking study of the latter derivatives was also carried out to rationalize their binding affinities and their modes of interactions with the active site of TNF-α.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Ulcer Agents/pharmacology , Pyrazoles/pharmacology , Thiazolidines/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Ulcer Agents/chemical synthesis , Anti-Ulcer Agents/chemistry , Dose-Response Relationship, Drug , Drug Design , Female , Gastrointestinal Hemorrhage/drug therapy , Gastrointestinal Hemorrhage/metabolism , Male , Mice , Molecular Docking Simulation , Molecular Structure , Pyrazoles/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship , Thiazolidines/chemistry , Tumor Necrosis Factor-alpha/metabolism
2.
RSC Adv ; 11(20): 12227-12234, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35685818

ABSTRACT

Robust, reliable and cost-effective paper-based analytical device for potentiometric pholcodine (opiate derivative drug) ion sensing has been prepared and characterized. A printed pholcodinium (PHL)2+/5-nitrobarbiturate (NB)- ion-association complex as a sensory material-based all-solid-state ion-selective electrode (ISE) on a chemically reduced graphene oxide (CRGO) solid-contact, and a printed all-solid-state Ag/AgCl reference electrode, has been combined on a hydrophobic paper substrate coated with fluorinated alkyl silane (CF3(CF2)7CH2CH2SiCl3, CF 10). The sensors revealed a potentiometric slope of 28.7 ± 0.3 mV dec-1 (R 2 = 0.9998) over a linear range starting from 2.0 × 10-7 M to 1.0 × 10-2 M and a detection limit of 0.04 µg mL-1. The repeatability and stability of the pholcodine paper-based sensor was found to be 2.32%. The RSD% (n = 6) was found to be 2.67% when using five different paper-based sensors. The sensor revealed an excellent selectivity towards PHL over dextromethorphan, codeine, ephedrine, carbinoxamine, caffeine, ketamine, and K+, Na+ and Ca2+ ions. It showed a good recovery (94-104%) for the determination of PHL in different artificial serum samples. The presented paper-based analytical device was successfully introduced for PHL determination in different pharmaceutical formulations (i.e. syrups and suspensions) containing pholcodine. The current work can be considered as a promising possible analytical tool to obtain cost-effective and disposable paper-based potentiometric sensing devices. These devices can be potentially manufacturable at large scales in pharmaceutical, clinical and forensic applications for opiate drug assessment.

4.
Molecules ; 24(8)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003551

ABSTRACT

New reliable and robust potentiometric ion-selective electrodes were fabricated using poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) as the solid contact between the sensing membrane and electrical substrate for an acetylcholine (ACh) bioassay. A film of PEDOT/PSS was deposited on a solid carbon screen-printed platform made from ceramic substrate. The selective materials used in the ion-selective electrode (ISE) sensor membrane were acetylcholinium tetraphenylborate (ACh/TPB/PEDOT/PSS-ISE) (sensor I) and triacetyl-ß-cyclodextrin (ß-CD/PEDOT/PSS-ISE) (sensor II). The sensors revealed clear enhanced Nernstian response with a cationic slope 56.4 ± 0.6 and 55.3 ± 1.1 mV/decade toward (ACh+) ions over the dynamic linear range 1.0 × 10-6-1 × 10-3 and 2.0 × 10-6-1.0 × 10-3 M at pH 5 with limits of detection 2.0 × 10-7 and 3.2 × 10-7 M for sensors I and II, respectively. The selectivity behavior of both sensors was also tested and the sensors showed a significant high selectivity toward ACh+ over different common organic and inorganic cations. The stability of the potential response for the solid-contact (SC)/ISEs was evaluated using a chronopotentiometric method and compared with that of electrodes prepared without adding the solid-contact material (PEDOT/PSS). Enhanced accuracy, excellent repeatability, good reproducibility, potential stability, and high selectivity and sensitivity were introduced by these cost-effective sensors. The sensors were also used to measure the activity of acetylcholinesterase (AChE). A linear plot between the initial rate of the hydrolysis of ACh+ substrate and enzyme activity held 5.0 × 10-3-5.2 IU∙L-1 of AChE enzyme. Application to acetylcholine determination in human serum was done and the results were compared with the standard colorimetric method.


Subject(s)
Acetylcholine/blood , Acetylcholinesterase/blood , Biosensing Techniques/methods , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Carbon/chemistry , Neurotransmitter Agents/blood , Polymers/chemistry , Polystyrenes/chemistry , Printing , Flow Injection Analysis , Humans , Hydrodynamics , Hydrolysis , Kinetics , Potentiometry , Water/chemistry
5.
Molecules ; 20(11): 20434-47, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26580591

ABSTRACT

A series of novel benzosuberone derivatives were synthesized and evaluated as antimicrobial agents by using substituted benzosuberone derivatives 1a,b as starting materials. Treatment of 1a,b with phenyl isothiocyanate in dimethylformamide was followed by treatment with cold HCl solution to afford the thioamides 4a,b, which was reacted with methyl iodide to obtain methylated products 5a,b. Cyclocondensation of 4a,b with chloroacetone 6 and phenacyl chloride 7 gave the corresponding thiophene derivatives 9a-c. Reaction of 4a,b with C-acetyl-N- arylhydrazonoyl chlorides 14a and 14b in boiling EtOH in the presence of triethylamine, afforded the corresponding 1,3,4-thiadiazoline derivatives 16a-d. The thioamides 4a,b were reacted with C-ethoxycarbonyl-N-arylhydrazonoyl chlorides 18a,b which afforded 1,3,4-thiadiazoline derivatives 19a-d. The benzosuberones 1a,b were treated with 3-mercaptopropanoic acid to give compounds 21a,b, which were cyclized to tricyclic thiopyran-4(5H)-one derivatives 22a,b. The latter compounds 22a,b were reacted with 3-mercaptopropanoic acid to give compounds 23a,b, which were cyclized tetracyclic ring systems 24a,b. Finally, compounds 24a,b were oxidized using hydrogen peroxide under reflux conditions to afford the oxidized form of the novel tetracyclic heterogeneous ring systems 25a,b. The newly synthesized compounds were screened for antimicrobial activities. The structures of new compounds were characterized by ¹H-NMR, 13C-NMR, IR, and EI-MS.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Coumarins/chemistry , Heterocyclic Compounds/chemical synthesis , Chemistry Techniques, Synthetic , Heterocyclic Compounds/pharmacology , Microbial Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...