Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 105: 104439, 2020 12.
Article in English | MEDLINE | ID: mdl-33161252

ABSTRACT

The development of NSAIDs/iNOS inhibitor hybrids is a new strategy for the treatment of inflammatory diseases by suppression of the overproduction of PGE2 and NO. A novel series of aryl carboximidamides 4a-g and their cyclized 3-aryl-1,2,4-oxadiazoles 5a-g counterparts derived from indomethacin 1 were synthesized. Most of the target compounds displayed lower LPS-induced NO production IC50 in RAW 264.7 cells and potent in vitro iNOS and PGE2 inhibitory activity than indomethacin. Moreover, in carrageenan-induced rat paw oedema method, most of them exhibited higher in vivo anti-inflammatory activity than the reference drug indomethacin. Notably, 4 hrs after carrageenan injection, compound 4a proved to be the most potent anti-inflammatory agent in this study, with almost two- and eight-fold more active than the reference drugs indomethacin (1) and celecoxib, respectively. Compound 4a proved to be inhibitor to LPS-induced NO production, iNOS activity and PGE2 with IC50 of 10.70 µM, 2.31 µM, and 29 nM; respectively. Compounds 4a and 5b possessed the lowest ulcerogenic liabilities (35% and 38%, respectively) compared to 1. Histopathological analysis revealed that compounds 4a and 5b demonstrated reduced degeneration and healing of ulcers. Molecular docking studies into the catalytic binding pocket of the iNOS protein receptor (PDB ID: 1r35) showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and ADMET analysis were calculated where compound 4a had reasonable drug-likeness with acceptable physicochemical properties so it could be used as promising orally absorbed anti-inflammatory therapy and entitled to be used as future template for further investigations.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Dinoprostone/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Indomethacin/chemistry , Nitric Oxide Synthase Type II/antagonists & inhibitors , Oxadiazoles/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Carrageenan/chemistry , Celecoxib/metabolism , Dose-Response Relationship, Drug , Edema/drug therapy , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Lipopolysaccharides/chemistry , Male , Mice , Molecular Docking Simulation , Molecular Structure , Nitric Oxide/metabolism , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Oximes/chemistry , RAW 264.7 Cells , Rats
2.
Life Sci ; 254: 117760, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32418889

ABSTRACT

AIM: The present study focused on the possible underlying protective mechanisms of UDCA against GNT-induced hepatic injury. METHODS: For achieving this goal, adult male rats were allocated into 4 groups: normal control (received vehicle), GNT (100 mg/kg, i.p. for 8 days), UDCA (60 mg/kg, P.O. for 15 days), and GNT + UDCA (received UDCA for 15 days and GNT started from the 7th day and lasted for 8 days). RESULTS: The results revealed that UDCA significantly improved GNT-induced hepatic injury, oxidative stress, apoptosis, and inflammatory response. Interestingly, UDCA inhibited apoptosis by marked down-regulation of the Bax gene, Caspase-3, and cleaved Caspase-3 protein expressions while the level of Bcl-xL gene significantly increased. Moreover, UDCA strongly inhibited the inflammatory response through the down-regulation of both NF-κB-p65 and TNF-α accompanied by IL-10 elevation. Furthermore, the obtained results ended with the restored of mitochondria function that confirmed by electron microscopy. Histological analysis showed that UDCA remarkably ameliorated the histopathological changes induced by GNT. SIGNIFICANCE: UDCA may be a promising agent that can be used to prevent hepatotoxicity observed in GNT treatment. This effect could be attributed to, at least in part, the ability of UDCA to modulate NF-κB-p65/TNF-α, Bax/Bcl-xl/Caspase-3, and eNOS/iNOS signaling pathways.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Gentamicins/antagonists & inhibitors , Gentamicins/toxicity , Hepatocytes/drug effects , Signal Transduction/drug effects , Ursodeoxycholic Acid/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Drug Interactions , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Random Allocation , Rats , Rats, Wistar , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...