Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Foods ; 12(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38002187

ABSTRACT

Monosodium glutamate (MSG) is one of the most frequently used food additives that endanger public health. The antioxidant, hyperlipidemic, and cytoprotective properties of Lepidium sativum seeds (LSS) as a natural remedy can minimize the harmful effects of MSG. This study investigated the potential protective effect of LSS against MSG-induced hepatotoxicity in rats. Male albino Sprague Dawley rats (n = 24) were equally divided into four groups for 30 days: the control group (G1) received a basal diet without supplement, group (G2) was fed a basal diet + MSG (30 g/kg b.w.) as a model group, group (G3) was fed a basal diet + MSG (30 g/kg b.w.) + LSS (30 g/kg b.w.), and group (G4) was fed a basal diet + MSG (30 g/kg b.w.) + LSS (60 g/kg b.w.). LSS enhanced serum alkaline phosphatase activity as well as total cholesterol, triglyceride, and glucose levels. It can decrease peroxide content in serum lipids and inhibit glutathione reductase and superoxide dismutase in hepatic cells. The dietary supplementation with LSS provided cytoprotection by enhancing the histoarchitecture of the liver and decreasing the number of apoptotic cells. Due to their antioxidant and anti-apoptotic properties, LSS effectively protect against the hepatotoxicity of MSG. These findings are of the highest significance for drawing attention to incorporating LSS in our food industry and as a health treatment in traditional medicine to combat MSG-induced hepatic abnormalities.

2.
Saudi Pharm J ; 31(9): 101693, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37559870

ABSTRACT

This study developed a novel, sensitive and selective LC-MS/MS method for the concurrent determination of DCB and VTX in rat plasma using encorafenib as internal standard (IS). To identify DCB, VTX, and IS, the positive multiple reaction monitoring (MRM) mode was used. Chromatographic separation was carried out using a reversed-phase Agilent Eclipse plus C18 column (100 mm × 2.1 mm, 3.5 µm) and an isocratic mobile phase made up of water with 0.1% formic acid and acetonitrile (50:50, v/v, pH 3.2) at a flow rate of 0.30 mL/min for 3.0 min. Prior to analysis, the DCB and VTX with the IS were extracted from plasma using the solid-phase extraction (SPE) method. High recovery rates for DCB, VTX and IS were achieved using the C18 cartridge without interference from plasma endogenous. The developed method was validated as per the FDA guidelines over a linear concentration range in rat plasma from 5-3000 and 5-1000 ng/mL for DCB and VTX, respectively with r2 ≥ 0.998. For both drugs, the lower limits of detection (LLOD) were 2.0 ng/mL. After the HLOQ sample was injected, less than 20% of the LLOQ of DCB, VTX, and less than 5% of the IS carry-over in the blank sample was attained. The overall recoveries of DCB and VTX from rat plasma were in the range of 90.68-97.56%, and the mean RSD of accuracy and precision results was ≤6.84%. For the first time, the newly developed approach was effectively used in a pharmacokinetic study on the simultaneous oral administration of DCB and VTX in rats that received 15.0 mg/kg of DCB and 100.0 mg/kg of VTX.

3.
Molecules ; 28(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36838539

ABSTRACT

LE300 is a novel dopamine receptor antagonist used to treat cocaine addiction. In the current study, a sensitive and fast liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established and validated for the simultaneous analysis of LE300 and its N-methyl metabolite, MLE300, in rat plasma with an application in a pharmacokinetic study. The chromatographic elution of LE300, MLE300, and Ponatinib (IS, internal standard), was carried out on a 50 mm C18 analytical column (ID: 2.1 mm and particle size: 1.8 µm) maintained at 22 ± 2 °C. The run time was 5 min at a flow rate of 0.3 mL/min. The mobile phase consisted of 42% aqueous solvent (10 mM ammonium formate, pH: 4.2 with formic acid) and 58% organic solvent (acetonitrile). Plasma samples were pretreated using protein precipitation with acetonitrile. The electrospray ionization (ESI) source was used to generate an ion-utilizing positive mode. A multiple reaction monitoring mass analyzer mode was utilized for the quantification of analytes. The linearity of the calibration curves in rat plasma ranged from 1 to 200 ng/mL (r2 = 0.9997) and from 2 to 200 ng/mL (r2 = 0.9984) for LE300 and MLE300, respectively. The lower limits of detection (LLOD) were 0.3 ng/mL and 0.7 ng/mL in rat plasma for LE300 and MLE300, respectively. Accuracy (RE%) ranged from -1.71% to -0.07% and -4.18% to -1.48% (inter-day), and from -3.3% to -1.47% and -4.89% to -2.15% (intra-day) for LE300 and MLE300, respectively. The precision (RSD%) was less than 2.43% and 1.77% for the inter-day, and 2.77% and 1.73% for intra-day of LE300 and MLE300, respectively. These results are in agreement with FDA guidelines. The developed LC-MS/MS method was applied in a pharmacokinetic study in Wistar rats. Tmax and Cmax were 2 h and 151.12 ± 12.5 ng/mL for LE300, and 3 h and 170.4 ± 23.3 ng/mL for MLE300.


Subject(s)
Dopamine Antagonists , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Rats, Wistar , Reproducibility of Results
4.
J Chromatogr A ; 1691: 463819, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36724721

ABSTRACT

Monoliths media are gaining interest as excellent substitutes to conventional particle-packed columns. Monolithic columns show higher permeability and lower flow resistance than conventional liquid chromatography columns, providing high-throughput performance, resolution and separation in short run times. Monolithic columns with longer length, smaller inner diameter and specific selectivity to peptides or enantiomers have been played important role in hyphenated system. Monolithic stationary phases possess great efficiency, resolution, selectivity and sensitivity in the separation of complex biological samples, such as the complex mixtures of peptides for proteome analysis. The development of monolithic stationary phases has opened the new avenue in chromatographic separation science and is in turn playing much more important roles in the wide application area. Monolithic stationary phases have been widely used in fast and high efficiency one- and multi-dimensional separation systems, miniaturized devices, and hyphenated system coupled with mass spectrometers. The developing technology for preparation of monolithic stationary phases is revolutionizing the column technology for the separation of complex biological samples. These techniques using porous monoliths offer several advantages, including miniaturization and on-line coupling with analytical instruments. Additionally, monoliths are ideal support media for imprinting template-specific sites, resulting in the so-called molecularly-imprinted monoliths, with ultra-high selectivity. In this review, the origin of the concept, the differences between their characteristics and those of traditional packings, their advantages and drawbacks, theory of separations, the methods for the monoliths preparation of different forms, nanoparticle monoliths and metal-organic framework are discussed. Two application areas of monolithic metal-organic framework and nanoparticle monoliths are provided. The review article discusses the results reported in a total of 218 references. Other older references were included to illustrate the historical development of monoliths, both in preparation and types, as well as separation mechanism.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Chromatography, Liquid/methods , Peptides , Miniaturization , Nanoparticles/chemistry
5.
Molecules ; 28(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36615272

ABSTRACT

The combination regimen targeting BRAF and MEK inhibition, for instance, encorafenib (Braftovi™, ENF) plus binimetinib (Mektovi®, BNB), are now recommended as first-line treatment in patients with unresectable or metastatic melanoma with a BRAF V600-activating mutation. Patients treated with combination therapy of ENF and BNB demonstrated a delay in resistance development, increases in antitumor activity, and attenuation of toxicities compared with the activity of either agent alone. However, the pharmacokinetic profile of the FDA-approved ENF and BNB is still unclear. In this study, a rapid and sensitive LC-MS/MS bioanalytical method for simultaneous quantification of ENF and BNB in rat plasma was developed and validated. Chromatography was performed on an Agilent Eclipse plus C18 column (50 mm × 2.1 mm, 1.8 µm), with an isocratic mobile phase composed of 0.1% formic acid in water/acetonitrile (67:33, v/v, pH 3.2) at a flow rate of 0.35 mL/min. A positive multiple reaction monitoring (MRM) mode was chosen for detection and the process of analysis was run for 2 min. Plasma samples were pre-treated using protein precipitation with acetonitrile containing spebrutinib as the internal standard (IS). Method validation was assessed as per the FDA guidelines for the determination of ENF and BNB over concentration ranges of 0.5-3000 ng/mL (r2 ≥ 0.997) for each drug (plasma). The lower limits of detection (LLOD) for both drugs were 0.2 ng/mL. The mean relative standard deviation (RSD) of the results for accuracy and precision was ≤ 7.52%, and the overall recoveries of ENF and BNB from rat plasma were in the range of 92.88-102.28%. The newly developed approach is the first LC-MS/MS bioanalytical method that can perform simultaneous quantification of ENF and BNB in rat plasma and its application to a pharmacokinetic study. The mean result for Cmax for BNB and ENF was found to be 3.43 ± 0.46 and 16.42 ± 1.47 µg/mL achieved at 1.0 h for both drugs, respectively. The AUC0-∞ for BNB and ENF was found to be 18.16 ± 1.31 and 36.52 ± 3.92 µg/mL.h, respectively. On the other hand, the elimination half-life (t1/2kel) parameters for BNB and ENF in the rat plasma were found to be 3.39 ± 0.43 h and 2.48 ± 0.24 h, and these results are consistent with previously reported values.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Benzimidazoles , Carbamates , Melanoma , Sulfonamides , Tandem Mass Spectrometry , Animals , Rats , Chromatography, Liquid/methods , Proto-Oncogene Proteins B-raf/metabolism , Reproducibility of Results , Tandem Mass Spectrometry/methods , Carbamates/blood , Carbamates/pharmacokinetics , Sulfonamides/blood , Sulfonamides/pharmacokinetics , Benzimidazoles/blood , Benzimidazoles/pharmacokinetics , Melanoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/blood , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
6.
J Pharm Biomed Anal ; 194: 113798, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33298381

ABSTRACT

Only focusing on the plasma levels is inadequate for the full consideration of the physiological disposition of illicit drugs in vivo. Therefore, we conducted the inclusive study on the in vivo dynamic process of intraperitoneal administration of methcathinone (MET), a well-known member of the synthetic cathinone derivatives, which is structurally similar to amphetamine analogs. This study described a validated, selective and sensitive GC-MS method for the simultaneous quantification of MET and its main metabolite, ephedrine (EPD), in the plasma and brain tissue of mice, after solid phase extraction (SPE). Ephedrine-d3 was used as an internal standard (IS). The developed method was validated following US-FDA guidelines within a concentration range of 5-1000 ng/mL for both drugs (r2 > 0.998) in the mice plasma and brain. The recoveries of MET and EPD from the mice plasma and brain ranged from 108.5 to 112.1%. The intra- and inter-day RSDs were ≤ 11.0 %. The proposed method was applied, for the first time, to investigate the pharmacokinetic (PK) and distribution study of MET and EPD following intraperitoneal administration of MET (1.4 mg/kg) to Swiss albino mice. The results exhibited that the Cmax and Tmax of MET in mice plasma was 517.1 ng/mL and 15 min as compared to 3.6 ng/mL and 2 h of EPD. Moreover, MET rapidly passed the blood brain barrier with Cmax of 1444.5 ng/mL achieved at 15 min, whereas, EPD monitored Cmax of 43.6 ng/mL at 4 h in mice brain. The highest concentration of MET in the mice brain followed by plasma was reported, with a necessity to perform more detailed clinical investigations.


Subject(s)
Illicit Drugs , Solid Phase Extraction , Animals , Brain , Gas Chromatography-Mass Spectrometry , Mice , Propiophenones , Reproducibility of Results
7.
Drug Des Devel Ther ; 14: 4377-4385, 2020.
Article in English | MEDLINE | ID: mdl-33116422

ABSTRACT

BACKGROUND: Ravidasvir (RAV) has been regarded as a potent new NS5A inhibitor with a magnificent safety and tolerability in the management of genotype 4 hepatitis C virus (HCV) patients. Suitable analytical techniques are needed for the measurement of RAV in different biological matrices. METHODS: We have developed a fast, sensitive and economical 96-microwell-based spectrofluorimetric technique combined with one-step protein precipitation extraction strategy for the measurement of RAV in rat plasma. RESULTS: Under the optimum conditions, the direct relationship in rat plasma was accomplished between the RAV concentrations and the fluorescence (FL) intensity in a scope of 2.5-200 ng/mL with 0.9998 and 0.9999 for the quantification and correlation coefficients, respectively. The lower limit of detection (LLOD) was 0.840 ng/mL and this demonstrates the high sensitivity of the proposed assay. The accuracy (RE%) ranged from 95.34% to 102.29%, and the precision (RSD%) was less than 3.59%. The recovery was ranged from 93.12% to 96.26%. The stability of RAV in rat plasma was carried out and established its good stability in the range of room conventional temperature and at long-term stability (-80°C, 30 days). The developed technique was validated as stated by the United States Food and Drug Administration (US-FDA) guidelines for bioanalytical technique verification. CONCLUSION: The approved technique was effectively applied for a pharmacokinetic (PK) study after single oral gavage administration of RAV at a dose of 35 mg/kg and it could be presumed that the proposed assay can be applied to clinical trials.


Subject(s)
Antiviral Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Hepatitis C, Chronic/drug therapy , Valine/analogs & derivatives , Animals , Antiviral Agents/blood , Area Under Curve , Benzimidazoles/blood , Limit of Detection , Male , Rats , Rats, Wistar , Reproducibility of Results , Sensitivity and Specificity , Spectrometry, Fluorescence , Valine/blood , Valine/pharmacokinetics
8.
J Enzyme Inhib Med Chem ; 35(1): 733-743, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32189526

ABSTRACT

We evaluated the hCA (CA, EC 4.2.1.1) inhibitory activity of novel 4-(2-(2-substituted-thio-4-oxoquinazolin-3(4H)-yl)ethyl)benzenesulfonamides (compounds 2-20) towards the isoforms I, II, IX, and XII. hCA Isoforms were effectively inhibited by most of new compounds comparable to those of AAZ. Compounds 2 and 4 showed interestingly efficient and selective antitumor (hCA IX and hCA XII) inhibitor activities (KIs; 40.7, 13.0, and 8.0, 10.8 nM, respectively). Compounds 4 and 5 showed selective hCA IX inhibitory activity over hCA I (SI; 95 and 24), hCA IX/hCA II (SI; 23 and 5.8) and selective hCA XII inhibitory activity over hCA I (SI; 70 and 44), hCA XII/hCA II, (SI; 17 and 10) respectively compared to AAZ. Compounds 12-17, and 19-20 showed selective inhibitory activity towards hCA IX over hCA I and hCA II, with selectivity ranges of 27-195 and 3.2-19, respectively, while compounds 12, 14-17, and 19 exhibited selective inhibition towards hCA XII over hCA I and hCA II, with selectivity ratios of 48-158 and 5.4-31 respectively, compared to AAZ. Molecular docking analysis was carried out to investigate the selective interactions among the most active derivatives, 17 and 20 and hCAs isoenzymes. Compounds 17 and 20, which are highly selective CA IX and XII inhibitors, exhibited excellent interaction within the putative binding site of both enzymes, comparable to the co-crystallized inhibitors.HighlightsQuinazoline-linked ethylbenzenesulfonamides inhibiting CA were synthesised.The new molecules potently inhibited the hCA isoforms I, II, IV, and IX.Compounds 4 and 5 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors.Compounds 4 and 5 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.Compounds 12-17, 19, and 20 were found to be selective hCA IX/hCA I and hCA IX/hCA II inhibitors.Compounds 12, 14-17, 19 were found to be selective hCA XII/hCA I and hCA XII/hCA II inhibitors.Compounds 4 and 5 are selective hCA IX and XII inhibitors over hCA I (selectivity ratios of 95, 23, and 24, 5.8, respectively) and hCA II (selectivity ratios of 70, 17, and 44, 10 respectively). Compounds 12-17, and 19-20 are selective hCA IX inhibitors over hCA I (selectivity ratios of 27-195) and hCA II (selectivity ratios of 3.2-19). Compounds 12, 14-17 and 19 are also selective hCA XII inhibitors over hCA I (selectivity ratios of 48-158) and hCA II (selectivity ratios of 5.4-31).


Subject(s)
Carbonic Anhydrase IX/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Quinazolinones/pharmacology , Sulfonamides/pharmacology , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Docking Simulation , Molecular Structure , Quinazolinones/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry
9.
J Enzyme Inhib Med Chem ; 35(1): 610-621, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32013633

ABSTRACT

Cyclic imides containing 3-benzenesulfonamide, oxime, and ß-phenylalanine derivatives were synthesised and evaluated to elucidate their in vivo anti-inflammatory and ulcerogenic activity and in vitro cytotoxic effects. Most active anti-inflammatory agents were subjected to in vitro COX-1/2 inhibition assay. 3-Benzenesulfonamides (2-4, and 9), oximes (11-13), and ß-phenylalanine derivative (18) showed potential anti-inflammatory activities with 71.2-82.9% oedema inhibition relative to celecoxib and diclofenac (85.6 and 83.4%, respectively). Most active cyclic imides 4, 9, 12, 13, and 18 possessed ED50 of 35.4-45.3 mg kg-1 relative to that of celecoxib (34.1 mg kg-1). For the cytotoxic evaluation, the selected derivatives 2-6 and 8 exhibited weak positive cytotoxic effects (PCE = 2/59-5/59) at 10 µM compared to the standard drug, imatinib (PCE = 20/59). Cyclic imides bearing 3-benzenesulfonamide (2-5, and 9), acetophenone oxime (11-14, 18, and 19) exhibited high selectivity against COX-2 with SI > 55.6-333.3 relative to that for celecoxib [SI > 387.6]. ß-Phenylalanine derivatives 21-24 and 28 were non-selective towards COX-1/2 isozymes as indicated by their SI of 0.46-0.68.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Imides/pharmacology , Oximes/pharmacology , Phenylalanine/pharmacology , Sulfonamides/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Edema/drug therapy , Humans , Imides/chemistry , Molecular Docking Simulation , Molecular Structure , Oximes/chemistry , Phenylalanine/chemistry , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Benzenesulfonamides
10.
Bioorg Chem ; 87: 78-90, 2019 06.
Article in English | MEDLINE | ID: mdl-30878812

ABSTRACT

Carbonic anhydrase (CA) inhibitory activities of newly synthesized quinazoline-linked benzensulfonamides 10-29, 31, 32, 35, 36, and 45-51 against human CA (hCA) isoforms I, II, IX, and XII were measured and compared to that of acetazolamide (AAZ) as a standard inhibitor. Potent selective inhibitory activity against hCA I was exerted by compounds 14, 15, 17, 19, 20, 21, 24, 25, 28, 29, 31, 35, 45, 47, 49, and 51 with inhibition constant (KIs) values of 39.4-354.7 nM that were nearly equivalent or even greater than that of AAZ (KI, 250.0 nM). Compounds 15, 20, 24, 28, 29, 45 and 47 proved to have inhibitory activities against hCA II with (KIs, 0.73-16.5 nM) that were similar or improved to that of AAZ (KI, 12.0 nM). Compounds 13-29, 31-32, and 45-51 displayed potent hCA IX inhibitory activities (KIs, 1.6-32.2 nM) that were more effective than or nearly equal to AAZ (KI, 25.0 nM). Compounds 14, 15, 20, 21, 26, 45, and 47 exerted potent hCA XII inhibitory activities (KIs, 5.2-9.2 nM), indicating similar CAI activities as compared to that of AAZ (KI, 5.7 nM).


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Quinazolines/pharmacology , Sulfonamides/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Molecular Structure , Quinazolines/chemistry , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
11.
PLoS One ; 14(2): e0212048, 2019.
Article in English | MEDLINE | ID: mdl-30742664

ABSTRACT

Crizotinib (CZT) is a potent drug used for treatment of non-small cell lung cancer (NSCLC); however, its circulating concentration variability has been associated with acquired resistance and toxicity, restricting the success of cancer treatment. As such, the development of an assay that monitors CZT plasma concentrations in patients is a valuable tool in cancer treatment. In this study, a hapten of CZT was synthesized by introducing the acetohydrazide moiety as a spacer into the chemical structure of CZT. The chemical structure of the CZT acetohydrazide (hapten) was confirmed by mass, 1H-, and 13C-NMR spectrometric techniques. The hapten was coupled to each of bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH) proteins by ethyl-3-(3-dimethylaminopropyl) carbodiimide as a coupling reagent. CZT-KLH conjugate was used for immunization and generation of a polyclonal antibody recognizing CZT with high affinity (IC50 = 0.5 ng/mL). The polyclonal antibody was used in the development of an ELISA for determination of CZT. The ELISA involved a competitive binding reaction between CZT, in its samples, and immobilized CZT-BSA conjugate for the binding sites on a limited amount of the anti-CZT antibody. The assay limit of detection was 0.03 ng/mL and the working range was 0.05 - 24 ng/mL. Analytical recovery of CZT from spiked plasma was 101.98 ± 2.99%. The precisions of the assay were satisfactory; RSD was 3.2 - 6.5% and 4.8 - 8.2%, for the intra- and inter-assay precision, respectively. The assay is superior to all the existing chromatographic methods for CZT in terms of its procedure simplicity, convenience, and does not require treatment of plasma samples prior to the analysis. The proposed ELISA is anticipated to effectively contribute to the therapeutic monitoring of CZT in clinical settings.


Subject(s)
Antibodies/metabolism , Crizotinib/analysis , Crizotinib/immunology , Drug Monitoring/methods , Haptens/biosynthesis , Animals , Antibodies/chemistry , Antibody Formation , Antibody Specificity , Crizotinib/pharmacokinetics , Enzyme-Linked Immunosorbent Assay/methods , Female , Haptens/chemistry , Mice , Mice, Inbred BALB C , Sensitivity and Specificity
12.
Bioanalysis ; 10(18): 1511-1523, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30117333

ABSTRACT

AIM: To support the therapeutic drug monitoring of afatinib (AFT), an ELISA was required. RESULTS: A hapten for AFT was prepared and linked to each of BSA and KLH proteins by diazotization/coupling reaction. A polyclonal antibody recognizing AFT with high affinity (IC50 = 40 ng ml-1) was generated and used in the development of a competitive ELISA for quantitation of AFT in plasma samples. The assay limit of detection was 2 ng ml-1. The assay accuracy and precision were proved. CONCLUSION: The assay is an appropriate alternative to the existing LC-MS/MS assays for AFT and it is anticipated to effectively contribute to the therapeutic drug monitoring of AFT in clinical settings.


Subject(s)
Afatinib/pharmacology , Drug Monitoring/methods , Enzyme-Linked Immunosorbent Assay/methods , Afatinib/blood , Afatinib/therapeutic use , Animals , Rats
13.
J Enzyme Inhib Med Chem ; 33(1): 989-998, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29806488

ABSTRACT

A new series of NSAID thioesters were synthesized and evaluated for their in vitro antitumor effects against a panel of four human tumor cell lines, namely: HepG2, MCF-7, HCT-116 and Caco-2, using the MTT assay. Compared to the reference drugs 5-FU, afatinib and celecoxib, compounds 2b, 3b, 6a, 7a, 7b and 8a showed potent broad-spectrum antitumor activity against the selected tumour cell lines. Accordingly, these compounds were selected for mechanistic studies about COX inhibition and kinase assays. In vitro COX-1/COX-2 enzyme inhibition assay results indicated that compounds 2b, 3b, 6a, 7a, 7b, 8a and 8 b selectively inhibited the COX-2 enzyme (IC50 = ∼0.20-0.69 µM), with SI values of (>72.5-250) compared with celecoxib (IC50 = 0.16 µM, COX-2 SI: > 312.5); however, all the tested compounds did not inhibit the COX-1 enzyme (IC50 > 50 µM). On the other hand, EGFR, HER2, HER4 and cSrc kinase inhibition assays were evaluated at a 10 µM concentration. The selected candidates displayed limited activities against the various tested kinases; the compounds 2a, 3b, 6a, 7a, 7b and 8a showed no activity to weak activity (% inhibition = ∼0-10%). The molecular docking study revealed the importance of the thioester moiety for the interaction of the drugs with the amino acids in the active sites of COX-2. The aforementioned results indicated that thioester based on NSAID scaffolds derivatives may serve as new antitumor compounds.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carboxylic Acids/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Sulfhydryl Compounds/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents , Carboxylic Acids/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry
14.
Chem Cent J ; 6(1): 11, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22305461

ABSTRACT

This study represents the first report on the development of a novel spectrophotometric method for determination of cinacalcet hydrochloride (CIN) in its tablet dosage forms. Studies were carried out to investigate the reaction between CIN and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 8.5), an orange red-colored product exhibiting maximum absorption peak (λmax) at 490 nm was produced. The stoichiometry and kinetic of the reaction were investigated and the reaction mechanism was postulated. This color-developing reaction was employed in the development of a simple and rapid visible-spectrophotometric method for determination of CIN in its tablets. Under the optimized reaction conditions, Beer's law correlating the absorbance with CIN concentration was obeyed in the range of 3 - 100 µg/ml with good correlation coefficient (0.9993). The molar absorptivity (ε) was 4.2 × 105 l/mol/cm. The limits of detection and quantification were 1.9 and 5.7 µg/ml, respectively. The precision of the method was satisfactory; the values of relative standard deviations (RSD) did not exceed 2%. No interference was observed from the excipients that are present in the tablets. The proposed method was applied successfully for the determination of CIN in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.80 - 102.23 ± 1.27 - 1.62%. The results were compared favorably with those of a reference pre-validated method. The method is practical and valuable in terms of its routine application in quality control laboratories.

SELECTION OF CITATIONS
SEARCH DETAIL
...