Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biomater ; 2023: 2516233, 2023.
Article in English | MEDLINE | ID: mdl-38188698

ABSTRACT

Hand sanitizer usage has proven to be a common and practical method for reducing the spread of infectious diseases which can be caused by many harmful pathogens. There is a need for alcohol-free hand sanitizers because most hand sanitizers on the market are alcohol-based, and regular use of them can damage the skin and can be hazardous. India is the world's largest producer of fruits and one of the major problems after fruit consumption is their peels, causing waste management problems and contributing to the formation of greenhouse gases leading to air pollution and adding to the problem of climate change. Valorization of such wastes into other value-added products and their incorporation into formulations of eco-friendly alcohol-free hand sanitizers would solve these issues, save the environment, benefit the society, and help in achieving the sustainable development goals. Thus, this research focuses on formulating an effective natural alcohol-free hand sanitizer that harnesses the antimicrobial properties of the various types of bioactive components found in fruit peels of pomegranate, sweet lime, and lemon. The peel extracts and the formulated sanitizer proved considerable antimicrobial activity against the pathogenic Escherichia coli and hand microflora. Molecular docking was also applied to examine ligand-protein interaction patterns and predict binding conformers and affinity of the sanitizer phytocompounds towards target proteins in COVID-19, influenza, and pneumonia viruses. The binding affinities and the protein-ligand interactions virtual studies revealed that the sanitizer phytocompounds bind with the amino acids in the target proteins' active sites via hydrogen bonding interactions. As a result, it is possible to formulate a natural, alcohol-free hand sanitizer from fruit peels that is effective against pathogenic germs and viruses using the basic structure of these potential findings.

2.
J Appl Microbiol ; 131(4): 1621-1638, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33386652

ABSTRACT

The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.


Subject(s)
Microalgae , Phenol , Animals , Biofuels , Biomass , Phenols , Wastewater
3.
J Appl Microbiol ; 129(2): 319-334, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32118335

ABSTRACT

AIMS: This research was conducted to investigate the biocatalytic remediation of xenobiotics polluted seawater using two biocatalysts; whole bacterial cells of facultative aerobic halotolerant Corynebacterium variabilis Sh42 and its extracted crude enzymes. METHODS AND RESULTS: One-Factor-at-A-Time technique and statistical analysis were applied to study the effect of initial substrate concentrations, pH, temperature, and initial biocatalyst concentrations on the batch biocatalytic degradation of three xenobiotic pollutants (2-hydroxybiphenyl (2-HBP), catechol and benzoic acid) in artificial seawater (salinity 3·1%). HPLC and gas-chromatography mass spectroscopy analyses were utilized to illustrate the quantitative removal of the studied aromatic xenobiotic pollutants and their catabolic pathway. The results revealed that the microbial and enzymatic cultures followed substrate inhibition kinetics. Yano and Koga's equation showed the best fit for the biokinetic degradation rates of 2-HBP and benzoic acid, whereas Haldane biokinetic model adequately expressed the specific biodegradation rate of catechol. The biokinetic results indicated the good efficiency and tolerance of crude enzyme for biocatalytic degradation of extremely high concentrations of aromatic pollutants than whole C. variabilis Sh42 cells. The monitored by-products indicated that the catabolic degradation pathway followed an oxidation mechanism via a site-specific monooxygenase enzyme. Benzoic acid and catechol were identified as major intermediates in the biodegradation pathway of 2-HBP, which were then biodegraded through meta-cleavage to 2-hydroxymuconic semialdehyde. With time elapsed, the semialdehyde product was further biodegraded to acetaldehyde and pyruvic acid, which would be further metabolized via the bacterial TCA cycle. CONCLUSION: The batch enzymatic bioreactors performed superior-specific biocatalytic degradation rates for all the studied xenobiotic pollutants. SIGNIFICANCE AND IMPACT OF THE STUDY: The enzymatic system of C. variabilis Sh42 is tolerable for toxic xenobiotics and different physicochemical environmental parameters. Thus, it can be recommended as an effective biocatalyst for biocatalytic remediation of xenobiotics polluted seawater.


Subject(s)
Seawater/chemistry , Water Pollutants, Chemical/metabolism , Xenobiotics/metabolism , Biocatalysis , Biodegradation, Environmental , Bioreactors , Corynebacterium/metabolism , Kinetics , Metabolic Networks and Pathways
4.
J Appl Microbiol ; 128(2): 438-457, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31650655

ABSTRACT

AIMS: Investigate the capability of Aspergillus brasiliensis ATCC 16404 to mycosynthesize Co3 O4 -NPs. METHODS AND RESULTS: Mycelial cell-free filtrate of A. brasiliensis ATCC 16404 was applied for mycosynthesis of Co3 O4 -NPs. The preliminary indication for the formation of Co3 O4 -NPs was the change in colour from yellow to reddish-brown. One-factor-at a time-optimization technique was applied to determine the optimum physicochemical conditions required for the mycosynthesis of Co3 O4 -NPs and they were found to be: 72 h for reaction time, pH 11, 30°C, 100 rev min-1 for shaking speed in the darkness using 4 mmol l-1 of CoSO4. 7H2 O and 5·5% of A. brasiliensis dry weight mycelium (w/v). The mycosynthesized Co3 O4 -NPs were characterized using various techniques: spectroscopy including UV/Vis spectrophotometry, dynamic light scattering (DLS), zeta potential measurement, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy and X-ray diffraction; and vibrating sample magnetometry and microscopy including field emission scanning electron microscopy and high-resolution transmission electron microscopy. Spectroscopic techniques confirmed the formation of Co3 O4 -NPs and the microscopic ones confirmed the shape and size of the mycosynthesized Co3 O4 -NPs as quasi-spherical shaped, monodispersed nanoparticles with a nano size range of 20-27 nm. The mycosynthesized Co3 O4 -NPs have excellent magnetic properties and exhibited a good antimicrobial activity against some pathogenic micro-organisms. CONCLUSION: Ferromagnetic Co3 O4 -NPs with considerable antimicrobial activity were for the first time mycosynthesized. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of fungi as potential bionanofactories for mycosynthesis of nanoparticles is relatively a recent field of research with considerable prospects.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Aspergillus/drug effects , Cobalt/chemistry , Cobalt/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Oxides/chemistry , Oxides/pharmacology , Antifungal Agents/chemical synthesis , Aspergillus/growth & development , Magnetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
5.
J Appl Microbiol ; 126(1): 138-154, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30199141

ABSTRACT

AIMS: In order to efficiently control the corrosive sulphate-reducing bacteria (SRB), the main precursor of the microbial influenced corrosion (MIC) in oil industry, the ability of Trichoderma longibrachiatumDSMZ 16517 to synthesize silver nanoparticles (AgNPs) was investigated and their biocidal activity against halotolerant SRB was tested. METHODS AND RESULTS: The mycelial cell-free filtrate (MCFF) bioreduced the silver ions (Ag+ ) to their metallic nanoparticle state (Ag0 ), which was presumptively indicated by the appearance of a dark brown suspension and confirmed by the characteristic absorbance of AgNPs at ʎ422nm . One-factor-at-a-time technique was used to optimize the effect of temperature, time, pH, fungal biomass and silver nitrate concentrations, stirring rates and dark effect. The dynamic light scattering (DLS) analysis revealed average AgNPs size and zeta potential values of 17·75 nm and -26·8 mV, respectively, indicating the stability of the prepared AgNPs. The X-ray diffraction (XRD) pattern assured the crystallinity of the mycosynthesized AgNPs, with an average size of 61 nm. The field emission scanning electron microscope (FESEM) and high-resolution transmission electron microscope (HRTEM) showed nonagglomerated spherical, triangular and cuboid AgNPs ranging from 5 to 11 ± 0·5 nm. The Fourier transform infrared spectroscopy (FT-IR) analysis of the mycosynthesized AgNPs affirmed the role of MCFF as a reducing and capping agent. A preliminary suggested mechanism for mycosynthesis of AgNPs was elucidated. The mycosynthesized AgNPs expressed high biocidal activity against a halotolerant planktonic mixed culture of SRB. The HRTEM analysis showed a clear evidence of an alteration in cell morphology, a disruption of SRB cell membranes, a lysis in cell wall and a cytoplasmic extraction after treatment with AgNPs. This confirmed the bactericidal effect of the mycosynthesized AgNPs. CONCLUSION: The biocidal activity of the mycosynthesized AgNPs against halotolerant planktonic SRB makes it an attractive option to control MIC in the petroleum industry. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides a helpful insight into the development of a new mycosynthesized biocidal agent against the corrosive sulphate-reducing bacteria.


Subject(s)
Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Metal Nanoparticles/chemistry , Silver/metabolism , Silver/pharmacology , Sulfates/metabolism , Trichoderma/metabolism , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Microscopy, Electron, Transmission , Oxidation-Reduction , Silver/chemistry , Sodium Chloride/metabolism , Spectroscopy, Fourier Transform Infrared , Trichoderma/chemistry , Trichoderma/genetics , X-Ray Diffraction
6.
J Appl Microbiol ; 125(4): 1076-1093, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29907994

ABSTRACT

AIM: The aim of this study was to isolate and identify lipolytic bacteria. Perform a statistical stepwise physicochemical optimization for maximum production of extracellular lipase and its validation in a bioreactor. METHODS AND RESULTS: Several lipolytic bacteria were isolated from petroleum hydrocarbon-polluted soil. The strain expressing the highest lipase activity (47 U ml-1 ) was genetically identified as Gram-positive Bacillus stratosphericus PSP8 (NCBI GenBank accession no. MH120423). The response surface methodology (RSM)-central composite face centre (CCF) design of experiments was performed based on the preselected levels of the studied parameters obtained from the performed one-factor-at-a-time sequential experiments. A second-order polynomial model was predicted and improved the lipase production by approximately 1·6-fold. Preliminary scaling up of the validated optimized process was carried out in a batch 10-l stirred tank bioreactor, applying the optimum predicted operating conditions; pH 6·98, 34·8°C, 2·2 × 106 cells per ml, 200 rev min-1 , 4·82 g l-1 tributyrine concentration, 1% sucrose and 0·1% yeast extract. This yielded 89 U ml-1 at the late log phase of bacterial growth (48 h). Logistic kinetic model effectively characterized the submerged fermentation process, and the maximum specific growth and lipase production rates were estimated to be 0·338 and 0·164 h-1 respectively. CONCLUSIONS: The mesophilic and neutrophilic B. stratosphericus PSP8 isolated from petroleum hydrocarbon-contaminated soil is a proper source of lipase. The closeness of the predicted response with that of the experimental value and the enhancement of lipase productivity in fermenter scale by approximately 1·9-fold, showed that statistically optimized design can be used in order to improve the lipase production to meet the increasing demand. SIGNIFICANCE AND IMPACT OF THE STUDY: The RSM-CCF statistical optimization is useful for optimizing a large number of variables and studying their interactive effects on extracellular lipase production.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/metabolism , Lipase/metabolism , Bacillus/chemistry , Bacillus/genetics , Bacillus/isolation & purification , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bioreactors/microbiology , Fermentation , Kinetics , Lipase/chemistry , Lipase/genetics , Models, Statistical , Petroleum/analysis , Soil Microbiology
7.
J Appl Microbiol ; 125(2): 370-382, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29624805

ABSTRACT

AIMS: Since mycosynthesis of metal nanoparticles (NPs) is advertised as a promising and ecofriendly approach. Thus, this study aims to investigate the capability of Aspergillus brasiliensis ATCC 16404 for mycosynthesis of silver NPs (AgNPs). METHODS AND RESULTS: One-factor-at-a-time-technique was used to study the effect of different physicochemical parameters: the reaction time, pH, temperature, different stirring rates, illumination, and finally, the different concentrations of silver nitrate and fungal biomass on the mycosynthesis of AgNPs. The visual observation showed the characteristic brown colour formation due to the bioreduction of Ag+ ions to Ag0 by the mycelial cell-free filtrate (MCFF). The UV/visible spectrophotometric technique displayed a characteristic sharp peak at ʎ440 confirming the mycosynthesis of AgNPs. The zeta potential value -16·7 mV assured the long-term stability of AgNPs and the dynamic light scattering analysis revealed good dispersion and average particle size 77 nm. The energy dispersive X-ray spectroscopy displayed a maximum elemental distribution of silver elements. The X-ray diffraction spectroscopy demonstrated the crystallinity of the mycosynthesized AgNPs. The field emission scanning electron microscope and high-resolution transmission electron microscope revealed monodispersed spherical shaped AgNPs with average particle size of 6-21 nm. The FTIR analysis showed the major peaks of proteins providing the possible role of MCFF in the synthesis and stabilization of the AgNPs. The mycosynthesized AgNPs expressed good biocidal activity against different pathogenic micro-organisms causing some water-related diseases and health problems to local residents. CONCLUSIONS: This study proved that A. brasiliensis ATCC 16404 MCFF has good potential for mycosynthesis of AgNPs, which exhibited good antimicrobial effect on different pathogenic micro-organisms; thus, it can be applied for water disinfection. SIGNIFICANCE AND IMPACT OF THE STUDY: This research provides a helpful insight into the development of a new mycosynthesized antimicrobial agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspergillus/metabolism , Metal Nanoparticles/chemistry , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Drug Stability , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size , Silver/chemistry , Surface Properties
8.
J Appl Microbiol ; 125(2): 422-440, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29675837

ABSTRACT

AIMS: Marine seaweeds (macroalgae) cause an eutrophication problem and affects the touristic activities. The success of the production of the third-generation bioethanol from marine macroalgae depends mainly on the development of an ecofriendly and eco-feasible pretreatment (i.e. hydrolysis) technique, a highly effective saccharification step and finally an efficient bioethanol fermentation step. Therefore, this study aimed to investigate the potentiality of different marine macroalgal strains, collected from Egyptian coasts, for bioethanol production via different saccharification processes. METHODS AND RESULTS: Different marine macroalgal strains, red Jania rubens, green Ulva lactuca and brown Sargassum latifolium, have been collected from Egyptian Mediterranean and Red Sea shores. Different hydrolysis processes were evaluated to maximize the extraction of fermentable sugars; thermochemical hydrolysis with diluted acids (HCl and H2 SO4 ) and base (NaOH), hydrothermal hydrolysis followed by saccharification with different fungal strains and finally, thermochemical hydrolysis with diluted HCl, followed by fungal saccharification. The hydrothermal hydrolysis of S. latifolium followed by biological saccharification using Trichoderma asperellum RM1 produced maximum total sugars of 510 mg g-1 macroalgal biomass. The integration of the hydrothermal and fungal hydrolyses of the macroalgal biomass with a separate batch fermentation of the produced sugars using two Saccharomyces cerevisiae strains, produced approximately 0·29 g bioethanol g-1 total reducing sugars. A simulated regression modelling for the batch bioethanol fermentation was also performed. CONCLUSIONS: This study supported the possibility of using seaweeds as a renewable source of bioethanol throughout a suggested integration of macroalgal biomass hydrothermal and fungal hydrolyses with a separate batch bioethanol fermentation process of the produced sugars. SIGNIFICANCE AND IMPACT OF THE STUDY: The usage of marine macroalgae (i.e. seaweeds) as feedstock for bioethanol; an alternative and/or complimentary to petro-fuel, would act as triple fact solution; bioremediation process for ecosystem, renewable energy source and economy savings.


Subject(s)
Ethanol/metabolism , Fermentation , Seaweed/metabolism , Sugars/chemistry , Sugars/metabolism , Biomass , Biotechnology/methods , Egypt , Hydrolysis , Saccharomyces cerevisiae , Trichoderma
SELECTION OF CITATIONS
SEARCH DETAIL
...