Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Reprod Sci ; 261: 107398, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128190

ABSTRACT

The present study was conducted to test a new super-agonist recombinant bovine FSH (rbFSH) to induce superovulation (SOV) in dromedary camels. In experiment I, a single IM injection of 40, 60, 80, 100, or 120 µg rbFSH was administered (4 donors per group) to determine the effective dose resulting in acceptable multiple ovulation and embryo yield. Administration of 40 µg was ineffective, while 100 and 120 µg were associated with increased numbers of developed follicles, corpora lutea, and recovered embryos compared to administration of 60 and 80 µg. In experiment II, donors were divided into treatment groups to compare rbFSH with two conventional protocols for SOV. Donors received a single dose of 2000 IU eCG in combination with 400 mg porcine follicle-stimulating hormone (pFSH; Folltropin-V®; Group 1, n = 29) or 500 µg of pFSH with 100 µg of pLH (Stimufol®; Group 2, n = 16). Group 3 (n = 19) received a single dose of 100 µg rbFSH. No difference was found in the size and number of follicles per donor. Response time, ovulation rate, and the number of corpora lutea and recovered embryos per donor were similar in all groups. The number of medium-sized and transparent embryos decreased while the number of small-sized and semi-transparent embryos increased in Group 3 (rbFSH) compared to the other two groups. The pregnancy rate of the recipients at 10 days post-ET, at two months of gestation, and the rate of early pregnancy loss (EPL) did not differ among the groups. In conclusion, a single IM administration of 100 µg rbFSH induces a successful superovulation in dromedary camels and has the advantage of reducing stress associated with multiple FSH administration of the conventional protocols.


Subject(s)
Camelus , Follicle Stimulating Hormone , Pregnancy , Female , Swine , Animals , Cattle , Camelus/physiology , Follicle Stimulating Hormone/pharmacology , Embryo Transfer/veterinary , Superovulation , Follicle Stimulating Hormone, Human/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...