Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(49): e2312905120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38011573

ABSTRACT

Electron cryomicroscopy can, in principle, determine the structures of most biological molecules but is currently limited by access, specimen preparation difficulties, and cost. We describe a purpose-built instrument operating at 100 keV-including advances in electron optics, detection, and processing-that makes structure determination fast and simple at a fraction of current costs. The instrument attains its theoretical performance limits, allowing atomic resolution imaging of gold test specimens and biological molecular structure determination in hours. We demonstrate its capabilities by determining the structures of eleven different specimens, ranging in size from 140 kDa to 2 MDa, using a fraction of the data normally required. CryoEM with a microscope designed specifically for high-efficiency, on-the-spot imaging of biological molecules will expand structural biology to a wide range of previously intractable problems.

2.
Microsc Microanal ; 14(5): 439-50, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18793488

ABSTRACT

Experimental low-loss electron (LLE) yields were measured as a function of loss energy for a range of elemental standards using a high-vacuum scanning electron microscope operating at 5 keV primary beam energy with losses from 0 to 1 keV. The resulting LLE yield curves were compared with Monte Carlo simulations of the LLE yield in the particular beam/sample/detector geometry employed in the experiment to investigate the possibility of modeling the LLE yield for a series of elements. Monte Carlo simulations were performed using both the Joy and Luo [Joy, D.C. & Luo, S., Scanning 11(4), 176988 (2005)] to assess the influence of the more recent stopping power data on the simulation results. Further simulations have been conducted to explore the influence of sample/detector geometry on the LLE signal in the case of layered samples consisting of a thin C overlayer on an elemental substrate. Experimental LLE data were collected from a range of elemental samples coated with a thin C overlayer, and comparisons with Monte Carlo simulations were used to establish the overlayer thickness.

3.
Ultramicroscopy ; 93(3-4): 223-43, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12492233

ABSTRACT

Scanning electron imaging of plan views of boron-doped patterns in silicon is examined, together with the mechanism of formation of the electronic contrast in this kind of structures. Main to-date published results are critically reviewed and new data are presented concerning the secondary, backscattered and total-emission electron contrasts, including their qualitative and quantitative behaviour, particularly in the low energy range achieved with the help of the cathode lens (the scanning low energy electron microscopy mode, SLEEM). Surface analysis of the structure by means of Auger electron spectrometer has been performed, too, both before and after ion beam bombardment. The scanning electron microscope micrographs, acquired after the oxide mask removal in HF, are examined in a variety of detection modes, aiming at identification of the signal component primarily bearing the contrast. The energy dependence of the contrasts is presented as well as its change owing to alteration in the vacuum conditions. The most important findings include an extremely high contrast obtained in the SLEEM mode and even more enhanced under medium vacuum conditions at which the carbonaceous layer of surface contamination plays its role. The observed phenomena are partly explained in the frame of the "flat band" model of a passivated surface. The increased contrast in the SLEEM mode is understood as connected with the above-surface electric field of the cathode lens, generating space charge layers inside the semiconductor. In addition, charge carriers, injected via the primary electron beam, are considered as influencing the contrast vs. energy dependence.

SELECTION OF CITATIONS
SEARCH DETAIL
...