Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 52(46): 17119-17131, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37800283

ABSTRACT

The reaction among [Au2Ag2(C6F5)4(OEt2)2]n, PbCl2 and terpyridine leads to the polymeric complex [{Au(C6F5)2}2{Pb(terpy)}]n (1). Its crystal structure reveals potential voids close to the lead centres large enough to hold different molecules. The availability of these free sites allows complex 1 to act as a VOC sensor. Thus, when 1 is exposed to different solvent vapours such as acetonitrile, toluene or THF, variations in its solid appearance and its photophysical properties are observed as a consequence of the formation of the new polymorphs [{Au(C6F5)2}2{Pb(terpy)(CH3CN)2}]n (2), [{Au(C6F5)2}2{Pb(terpy)}]n·Tol (3) and [{Au(C6F5)2}2{Pb(terpy)(THF)}]n·THF (4). Each polymorph displays a different emission energy depending on its structure and the presence of metallophilic interactions. In addition, the reversible solvent molecule exchange allows the tuning of the luminescence emissions in the greenish yellow-red range. DFT and TD-DFT calculations were performed to explain the origin of the luminescence of all these complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...