Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(41): 23191-23198, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-35540168

ABSTRACT

Tailoring the surface chemistry of CoCr alloys is of tremendous interest in many biomedical applications. In this work, we show that CoCr can be modified by diazonium electrografting provided the surface is not homogeneously covered with an oxide layer. Cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) show the electrografting of a poly(aminophenylene) (PAP) layer on CoCr when treated at a reductive potential (CoCr-0.5 V), whereas no PAP film was formed on CoCrOCP and CoCr1 V, treated at open circuit and anodic potentials respectively. Based on XPS results, we attributed the electrografting to the formation of carbide bonds between PAP and the inhomogeneous thin oxide layer of CoCr-0.5 V. We then show an example of application of PAP coatings on CoCr and prove that the presence of a PAP coating on CoCr-0.5 V results in a 5-fold increase of the adherence of poly methyl methacrylate (PMMA) to PAP-coated CoCr compared to uncoated samples; this is of prime significance to improving the long-term stability of dental prostheses. These findings support the importance of reducing the oxide layer for effective functionalization of metal oxides with aryl diazonium salts and suggest a promising surface modification approach for biomedical applications.

2.
J Mater Chem B ; 2(24): 3886-3896, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-32261735

ABSTRACT

Application of novel organic-inorganic hybrid sol-gel coatings containing dispersed hydroxyapatite (HAp) particles improves the biocompatibility, normal human osteoblast (NHOst) response in terms of osteoblast viability and adhesion of a Ti6Al4V alloy routinely used in medical implants. The incorporation of HAp particles additionally results in more effective barrier proprieties and improved corrosion protection of the Ti6Al4V alloy through higher degree of cross-linking in the organopolysiloxane matrix and enhanced film thickness.

3.
J Mater Chem B ; 2(45): 7955-7963, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-32262085

ABSTRACT

The biocompatibility and life of metallic implants can be enhanced through improving the biocompatibility and corrosion protection characteristics of the coatings used with these materials. In this study, triethylphosphite (TEP) was used to introduce phosphorus into organic-inorganic hybrid silica based sol-gel coatings prepared using γ-methacryloxypropyltrimethoxysilane and tetramethylorthosilicate. Addition of TEP dramatically increased the rate of intermolecular condensation and resulted in materials showing greater cross-linking. Protein (fibrinogen) uptake, osteoblast in vitro biocompatibility and corrosion resistance was enhanced in coatings containing TEP. Although higher concentrations of phosphorus supported the greatest improvement in biocompatibility, a compromise in the phosphorus concentration used would be required if corrosion resistance was most desirable parameter for optimisation. Films prepared by dip coating on Ti6Al4V alloys from these sols offer a promising alternative to wholly metallic prostheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...