Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 37(8): e3449, 2021 08.
Article in English | MEDLINE | ID: mdl-33599091

ABSTRACT

Brain tumor is a mass of anomalous cells in the brain. Medical imagining techniques have a vital role in the diagnosis of brain tumors. Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques are the most popular techniques to localize the tumor area. Brain tumor segmentation is very important for the diagnosis of tumors. In this paper, we introduce a framework to perform brain tumor segmentation, and then localize the region of the tumor, accurately. The proposed framework begins with the fusion of MR and CT images by the Non-Sub-Sampled Shearlet Transform (NSST) with the aid of the Modified Central Force Optimization (MCFO) to get the optimum fusion result from the quality metrics perspective. After that, image interpolation is applied to obtain a High-Resolution (HR) image from the Low-Resolution (LR) ones. The objective of the interpolation process is to enrich the details of the fusion result prior to segmentation. Finally, the threshold and the watershed segmentation are applied sequentially to localize the tumor region, clearly. The proposed framework enhances the efficiency of segmentation to help the specialists diagnose brain tumors.


Subject(s)
Algorithms , Brain Neoplasms , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Tomography, X-Ray Computed
2.
Microsc Res Tech ; 84(3): 394-414, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33350559

ABSTRACT

Automatic detection of maculopathy disease is a very important step to achieve high-accuracy results for the early discovery of the disease to help ophthalmologists to treat patients. Manual detection of diabetic maculopathy needs much effort and time from ophthalmologists. Detection of exudates from retinal images is applied for the maculopathy disease diagnosis. The first proposed framework in this paper for retinal image classification begins with fuzzy preprocessing in order to improve the original image to enhance the contrast between the objects and the background. After that, image segmentation is performed through binarization of the image to extract both blood vessels and the optic disc and then remove them from the original image. A gradient process is performed on the retinal image after this removal process for discrimination between normal and abnormal cases. Histogram of the gradients is estimated, and consequently the cumulative histogram of gradients is obtained and compared with a threshold cumulative histogram at certain bins. To determine the threshold cumulative histogram, cumulative histograms of images with exudates and images without exudates are obtained and averaged for each type, and the threshold cumulative histogram is set as the average of both cumulative histograms. Certain histogram bins are selected and thresholded according to the estimated threshold cumulative histogram, and the results are used for retinal image classification. In the second framework in this paper, a Convolutional Neural Network (CNN) is utilized to classify normal and abnormal cases.


Subject(s)
Diabetic Retinopathy , Optic Disk , Retinal Diseases , Algorithms , Diabetic Retinopathy/diagnostic imaging , Humans , Neural Networks, Computer , Retinal Diseases/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...