Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e2091, 2024.
Article in English | MEDLINE | ID: mdl-38983196

ABSTRACT

With the increasing demand for the use of technology in all matters of daily life and business, the demand has increased dramatically to transform business electronically especially regards COVID-19. The Internet of Things (IoT) has greatly helped in accomplishing tasks. For example, at a high temperature, it would be possible to switch on the air conditioner using a personal mobile device while the person is in the car. The Internet of Things (IoT) eases lots of tasks. A wireless sensor network is an example of IoT. Wireless sensor network (WSN) is an infrastructure less self-configured that can monitor environmental conditions such as vibration, temperature, wind speed, sound, pressure, and vital signs. Thus, WSNs can occur in many fields. Smart homes give a good example of that. The security concern is important, and it is an essential requirement to ensure secure data. Different attacks and privacy concerns can affect the data. Authentication is the first defence line against threats and attacks. This study proposed a new protocol based on using four factors of authentication to improve the security level in WSN to secure communications. The simulation results prove the strength of the proposed method which reflects the importance of the usage of such protocol in authentication areas.

2.
Sensors (Basel) ; 23(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37299876

ABSTRACT

Global warming and climate change are responsible for many disasters. Floods pose a serious risk and require immediate management and strategies for optimal response times. Technology can respond in place of humans in emergencies by providing information. As one of these emerging artificial intelligence (AI) technologies, drones are controlled in their amended systems by unmanned aerial vehicles (UAVs). In this study, we propose a secure method of flood detection in Saudi Arabia using a Flood Detection Secure System (FDSS) based on deep active learning (DeepAL) based classification model in federated learning to minimize communication costs and maximize global learning accuracy. We use blockchain-based federated learning and partially homomorphic encryption (PHE) for privacy protection and stochastic gradient descent (SGD) to share optimal solutions. InterPlanetary File System (IPFS) addresses issues with limited block storage and issues posed by high gradients of information transmitted in blockchains. In addition to enhancing security, FDSS can prevent malicious users from compromising or altering data. Utilizing images and IoT data, FDSS can train local models that detect and monitor floods. A homomorphic encryption technique is used to encrypt each locally trained model and gradient to achieve ciphertext-level model aggregation and model filtering, which ensures that the local models can be verified while maintaining privacy. The proposed FDSS enabled us to estimate the flooded areas and track the rapid changes in dam water levels to gauge the flood threat. The proposed methodology is straightforward, easily adaptable, and offers recommendations for Saudi Arabian decision-makers and local administrators to address the growing danger of flooding. This study concludes with a discussion of the proposed method and its challenges in managing floods in remote regions using artificial intelligence and blockchain technology.


Subject(s)
Blockchain , Floods , Humans , Saudi Arabia , Unmanned Aerial Devices , Artificial Intelligence
SELECTION OF CITATIONS
SEARCH DETAIL
...