Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Pharm Ther ; 47(12): 2115-2129, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053969

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Chronic myeloid leukaemia (CML) microenvironment is responsible for resistance of leukaemic cells to tyrosine kinase inhibitor, altered adhesion, increased proliferation and leukaemic cells growth and survival through the secretion of many soluble molecules. We aimed at monitoring soluble L-selectin (sCD62L) and secreted protein acidic and rich in cysteine (SPARC) levels in chronic phase chronic myeloid leukaemia (CP-CML) patients and assessing the impact of imatinib on these parameters. METHODS: This prospective controlled clinical trial enrolled 35 subjects classified into two groups: control group included 10 healthy volunteers and CP-CML patients group included 25 newly diagnosed CP-CML patients received imatinib 400 mg once daily. sCD62L plasma levels, SPARC serum levels, breakpoint cluster region-Abelson1 (BCR-ABL1) %, complete blood count with differential, liver and kidney functions parameters were assessed at baseline and after 3 and 6 months of treatment. RESULTS AND DISCUSSION: At baseline, sCD62L and SPARC were significantly elevated in CP-CML patients (p < 0.05) compared to control group. After 3 months of treatment, sCD62L was non-significantly decreased (p > 0.05), while surprisingly SPARC was significantly increased (p < 0.05) compared to baseline. Moreover, after 6 months of treatment, sCD62L was significantly decreased (p < 0.05) and SPARC was non-significantly decreased (p > 0.05) compared to baseline. In addition, sCD62L was significantly correlated with WBCs and neutrophils counts, while SPARC was significantly correlated with lymphocytes count at baseline and after 3 and 6 months of imatinib treatment. WHAT IS NEW AND CONCLUSION: The elevated levels of sCD62L and SPARC at diagnosis in CP-CML patients could reflect their roles in CML pathogenesis and the dynamic changes in their levels during imatinib therapy might suppose additional mechanisms of action of imatinib beside inhibition of BCR-ABL. Furthermore, imatinib showed a significant impact on sCD62L and SPARC levels during treatment period.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Osteonectin/therapeutic use , Prospective Studies , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Tumor Microenvironment
2.
Clin Exp Metastasis ; 33(4): 339-57, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26902691

ABSTRACT

Metformin, a widely prescribed oral hypoglycemic agent, has recently received a big interest because of its potential antitumorigenic effects in different cancer types. The present study investigated the impact of adding metformin to breast cancer adjuvant therapy in nondiabetic women on, insulin like growth factor-1 (IGF-1), IGF binding protein-3 (IGFBP-3), insulin, fasting blood glucose (FBG), the molar ratio of IGF-1 to IGFBP-3, homeostatic model assessment of insulin resistance (HOMA-IR) and metastasis. 102 women with newly diagnosed breast cancer were divided into 2 main groups, a control group and a metformin group. All women were treated with adjuvant therapy, according to the protocols of Ministry of Health and Population and National Cancer Institute, Egypt. Moreover, the women in the metformin group received 850 mg of metformin twice daily. Blood samples were collected at baseline, after chemotherapy (CT), after 6 months of hormonal therapy (6-HT) and 12 months of hormonal therapy (12-HT) for analysis of serum IGF-1, IGFBP-3, insulin, FBG and cancer antigen 15-3 (CA15-3). Metformin resulted in a significant reduction of IGF-1, IGF-1: IGFBP-3 molar ratio, insulin, FBG and HOMA-IR. On the other hand, metformin caused a significant increase of IGFBP-3. Moreover, metformin significantly decreased the numbers of metastatic cases after 6-HT. Metformin may have potential antitumor and antimetastatic effects that need further clinical investigations. This may be attributed to either the significant increase of the apoptotic inducer IGFBP-3 or/and the significant reduction of mitogenic insulin, IGF-1, free bioactive IGF-1, FBG and HOMA-IR.


Subject(s)
Breast Neoplasms/drug therapy , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/biosynthesis , Insulin/blood , Metformin/administration & dosage , Adult , Aged , Blood Glucose , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Insulin Resistance/genetics , Middle Aged , Neoplasm Metastasis
SELECTION OF CITATIONS
SEARCH DETAIL
...