Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2283-2295, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166008

ABSTRACT

Lithium-sulfur batteries hold great promise as next-generation high-energy-density batteries. However, their performance has been limited by the low cycling stability and sulfur utilization. Herein, we demonstrate that a selective reduction of the multivariate metal-organic framework, MTV-MOF-74 (Co, Ni, Fe), transforms the framework into a porous carbon decorated with bimetallic CoNi alloy and Fe3O4 nanoparticles capable of entrapping soluble lithium polysulfides while synergistically facilitating their rapid conversion into Li2S. Electrochemical studies on coin cells containing 89 wt % sulfur loading revealed a reversible capacity of 1439.8 mA h g-1 at 0.05 C and prolonged cycling stability for 1000 cycles at 1 C/1060.2 mA h g-1 with a decay rate of 0.018% per cycle. At a high areal sulfur loading of 6.9 mg cm-2 and lean electrolyte/sulfur ratio (4.5 µL:1.0 mg), the battery based on the 89S@CoNiFe3O4/PC cathode provides a high areal capacity of 6.7 mA h cm-2. The battery exhibits an outstanding power density of 849 W kg-1 at 5 C and delivers a specific energy of 216 W h kg-1 at 2 C, corresponding to a specific power of 433 W kg-1. Density functional theory shows that the observed results are due to the strong interaction between the CoNi alloy and Fe3O4, facilitated by charge transfer between the polysulfides and the substrate.

2.
RSC Adv ; 8(37): 20517-20533, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-35542380

ABSTRACT

Typical highly porous metal-organic framework (MOFs) materials based on chromium benzenedicarboxylates (Cr-BDC) were prepared through a one-pot hydrothermal synthesis, and were then modified by loading the appropriate ratio of sulfamic acid (SA) using a simple impregnation technique. Pure and modified MIL-101 was characterized by XRD, TEM, SEM and FT-IR measurements. TEM and SEM measurements confirmed that the MIL-101 particles preserved their regular octahedral structure after loading with different weight contents of sulfamic acid. The total number of acid sites and Brønsted to Lewis acid sites ratio (B/L) were examined using potentiometric titration and pyridine adsorption. The acid strength and surface acidity of SA/MIL-101 gradually increased after the modification of Cr-MIL-101 by sulfamic acid crystals up to 55 wt%, then decreased again. The catalytic performance of the solid catalysts was confirmed in the synthesis of 14-phenyl-14H-dibenzo [a,j] xanthene and 7-hydroxy-4-methyl coumarin. In the two reactions, the sample with 55% sulfamic acid loaded on MIL-101 displayed the highest catalytic activity and acidity. The adsorption behaviors of sulfamic acid loaded on MIL-101 materials for methyl orange (MO) as an anionic dye were studied, and were exceptionally suitable for the Langmuir adsorption isotherm. All loaded adsorbents showed high adsorption capacity for methyl orange at 25 °C. The results indicate that the adsorption capacity was modified by changing the amount of sulfamic acid loaded on MIL-101.

SELECTION OF CITATIONS
SEARCH DETAIL
...