Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 94(21): e2270-e2282, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32139505

ABSTRACT

OBJECTIVE: To report safety, pharmacokinetics, exon 53 skipping, and dystrophin expression in golodirsen-treated patients with Duchenne muscular dystrophy (DMD) amenable to exon 53 skipping. METHODS: Part 1 was a randomized, double-blind, placebo-controlled, 12-week dose titration of once-weekly golodirsen; part 2 is an ongoing, open-label evaluation. Safety and pharmacokinetics were primary and secondary objectives of part 1. Primary biological outcome measures of part 2 were blinded exon skipping and dystrophin protein production on muscle biopsies (baseline, week 48) evaluated, respectively, using reverse transcription PCR and Western blot and immunohistochemistry. RESULTS: Twelve patients were randomized to receive golodirsen (n = 8) or placebo (n = 4) in part 1. All from part 1 plus 13 additional patients received 30 mg/kg golodirsen in part 2. Safety findings were consistent with those previously observed in pediatric patients with DMD. Most of the study drug was excreted within 4 hours following administration. A significant increase in exon 53 skipping was associated with ∼16-fold increase over baseline in dystrophin protein expression at week 48, with a mean percent normal dystrophin protein standard of 1.019% (range, 0.09%-4.30%). Sarcolemmal localization of dystrophin was demonstrated by significantly increased dystrophin-positive fibers (week 48, p < 0.001) and a positive correlation (Spearman r = 0.663; p < 0.001) with dystrophin protein change from baseline, measured by Western blot and immunohistochemistry. CONCLUSION: Golodirsen was well-tolerated; muscle biopsies from golodirsen-treated patients showed increased exon 53 skipping, dystrophin production, and correct dystrophin sarcolemmal localization. CLINICALTRIALSGOV IDENTIFIER: NCT02310906. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that golodirsen is safe and Class IV evidence that it induces exon skipping and novel dystrophin as confirmed by 3 different assays.


Subject(s)
Dystrophin/biosynthesis , Muscular Dystrophy, Duchenne/drug therapy , Oligonucleotides/therapeutic use , Administration, Intravenous , Adolescent , Child , Dose-Response Relationship, Drug , Double-Blind Method , Dystrophin/genetics , Fluorescent Antibody Technique , Humans , Male , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/blood , Muscular Dystrophy, Duchenne/genetics , Sequence Deletion/drug effects
2.
Blood Adv ; 3(2): 198-211, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670536

ABSTRACT

It is now recognized that compounds released from tumor cells can activate platelets, causing the release of platelet-derived factors into the tumor microenvironment. Several of these factors have been shown to directly promote neovascularization and metastasis, yet how the feedback between platelet releasate and the tumor cell affects metastatic phenotype remains largely unstudied. Here, we identify that breast tumor cells secrete high levels of interleukin 8 (IL-8, CXCL8) in response to platelet releasate, which promotes their invasive capacity. Furthermore, we found that platelets activate the Akt pathway in breast tumor cells, and inhibition of this pathway eliminated IL-8 production. We therefore hypothesized inhibiting platelets with aspirin could reverse the prometastatic effects of platelets on tumor cell signaling. Platelets treated with aspirin did not activate the Akt pathway, resulting in reduced IL-8 secretion and impaired tumor cell invasion. Of note, patients with breast cancer receiving aspirin had lower circulating IL-8, and their platelets did not increase tumor cell invasion compared with patients not receiving aspirin. Our data suggest platelets support breast tumor metastasis by inducing tumor cells to secrete IL-8. Our data further support that aspirin acts as an anticancer agent by disrupting the communication between platelets and breast tumor cells.


Subject(s)
Aspirin/pharmacology , Blood Platelets/drug effects , Breast Neoplasms/blood , Breast Neoplasms/pathology , Platelet Aggregation Inhibitors/pharmacology , Blood Platelets/metabolism , Breast Neoplasms/metabolism , Cell Line, Tumor , Cytokines/metabolism , Female , Humans , Neoplasm Metastasis , Neoplasm Staging , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Signal Transduction
3.
Neuromuscul Disord ; 28(2): 116-121, 2018 02.
Article in English | MEDLINE | ID: mdl-29305136

ABSTRACT

The reading frame rule suggests that Duchenne muscular dystrophy (DMD) results from DMD mutations causing an out-of-frame transcript, whereas the milder Becker muscular dystrophy results from mutations causing an in-frame transcript. However, predicted nonsense mutations may instead result in altered splicing and an in-frame transcript. Here we report a 10-year-old boy with a predicted nonsense mutation in exon 42 who had a 6-minute walk time of 157% of that of age matched DMD controls, characterized as intermediate muscular dystrophy. RNA sequencing analysis from a muscle biopsy revealed only 6.0-9.8% of DMD transcripts were in-frame, excluding exon 42, and immunoblot demonstrated only 3.2% dystrophin protein expression. Another potential genetic modifier noted was homozygosity for the protective IAAM LTBP4 haplotype. This case suggests that very low levels of DMD exon skipping and dystrophin protein expression may result in amelioration of skeletal muscle weakness, a finding relevant to current dystrophin-restoring therapies.


Subject(s)
Codon, Nonsense , Dystrophin/genetics , Dystrophin/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Child , Exons , Gene Expression , Humans , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Phenotype
4.
Arterioscler Thromb Vasc Biol ; 37(4): 664-674, 2017 04.
Article in English | MEDLINE | ID: mdl-28153880

ABSTRACT

OBJECTIVE: Platelets, which are mainly known for their role in hemostasis, are now known to play a crucial role in metastasis. Tamoxifen is a selective estrogen receptor modulator that is widely used for the treatment of breast cancer. Tamoxifen and its metabolites have been shown to directly impact platelet function, suggesting that this drug has additional mechanisms of action. The purpose of this study was to determine whether tamoxifen exerts antitumor effects through direct platelet inhibition. APPROACH AND RESULTS: This study found that pretreatment with tamoxifen leads to a significant inhibition of platelet activation. Platelets exposed to tamoxifen released significantly lower amounts of proangiogenic regulator vascular endothelial growth factor. In vitro angiogenesis assays confirmed that tamoxifen pretreatment led to diminished capillary tube formation and decreased endothelial migration. Tamoxifen and its metabolite, 4-hydroxytamoxifen, also significantly inhibited the ability of platelets to promote metastasis in vitro. Using a membrane-based array, we identified several proteins associated with angiogenesis metastasis that were lower in activated releasate from tamoxifen-treated platelets, including angiogenin, chemokine (C-X-C motif) ligand 1, chemokine (C-C motif) ligand 5, epidermal growth factor, chemokine (C-X-C motif) ligand 5, platelet-derived growth factor dimeric isoform BB, whereas antiangiogenic angiopoietin-1 was elevated. Platelets isolated from patients on tamoxifen maintenance therapy were also found to have decreased activation responses, diminished vascular endothelial growth factor release, and lower angiogenic and metastatic potential. CONCLUSIONS: We demonstrate that tamoxifen and its metabolite 4-hydroxytamoxifen directly alter platelet function leading to decreased angiogenic and metastatic potential. Furthermore, this study supports the idea of utilizing targeted platelet therapies to inhibit the platelet's role in angiogenesis and malignancy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Blood Platelets/drug effects , Breast Neoplasms/drug therapy , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Tamoxifen/analogs & derivatives , Blood Platelets/metabolism , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Coculture Techniques , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MCF-7 Cells , Neoplasm Metastasis , Signal Transduction/drug effects , Tamoxifen/pharmacology , Vascular Endothelial Growth Factor A/metabolism
5.
Blood ; 127(7): 921-6, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26647394

ABSTRACT

In times of physiological stress, platelet count can transiently rise. What initiates this reactive thrombocytosis is poorly understood. Intriguingly, we found that treating megakaryocytes (MKs) with the releasate from activated platelets increased proplatelet production by 47%. Platelets store inflammatory cytokines, including the chemokine ligand 5 (CCL5, RANTES); after TRAP activation, platelets release over 25 ng/mL CCL5. We hypothesized that CCL5 could regulate platelet production by binding to its receptor, CCR5, on MKs. Maraviroc (CCR5 antagonist) or CCL5 immunodepletion diminished 95% and 70% of the effect of platelet releasate, respectively, suggesting CCL5 derived from platelets is sufficient to drive increased platelet production through MK CCR5. MKs cultured with recombinant CCL5 increased proplatelet production by 50% and had significantly higher ploidy. Pretreating the MK cultures with maraviroc prior to exposure to CCL5 reversed the augmented proplatelet formation and ploidy, suggesting that CCL5 increases MK ploidy and proplatelet formation in a CCR5-dependent manner. Interrogation of the Akt signaling pathway suggested that CCL5/CCR5 may influence proplatelet production by suppressing apoptosis. In an in vivo murine acute colitis model, platelet count significantly correlated with inflammation whereas maraviroc treatment abolished this correlation. We propose that CCL5 signaling through CCR5 may increase platelet counts during physiological stress.


Subject(s)
Blood Platelets/metabolism , Chemokine CCL5/metabolism , Megakaryocytes/pathology , Signal Transduction/physiology , Animals , Blood Platelets/cytology , Chemokine CCL5/genetics , Cyclohexanes/pharmacology , Humans , Maraviroc , Megakaryocytes/cytology , Mice , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Signal Transduction/drug effects , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...