Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Meat Sci ; 213: 109510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598967

ABSTRACT

This research aimed to explore the potential influence of mitochondria on the rate of anaerobic glycolysis. We hypothesized that mitochondria could reduce the rate of anaerobic glycolysis and pH decline by metabolizing a portion of glycolytic pyruvate. We utilized an in vitro model and incorporated CPI-613 and Avidin to inhibit pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), respectively. Four treatments were tested: 400 µM CPI-613, 1.5 U/ml Avidin, 400 µM CPI-613 + 1.5 U/ml Avidin, or control. Glycolytic metabolites and pH of the in vitro model were evaluated throughout a 1440-min incubation period. CPI-613-containing treatments, with or without Avidin, decreased pH levels and increased glycogen degradation and lactate accumulation compared to the control and Avidin treatments (P < 0.05), indicating increased glycolytic flux. In a different experiment, two treatments, 400 µM CPI-613 or control, were employed to track the fates of pyruvate using [13C6]glucose. CPI-613 reduced the contribution of glucose carbon to tricarboxylic acid cycle intermediates compared to control (P < 0.05). To test whether the acceleration of acidification in reactions containing CPI-613 was due to an increase in the activity of key enzymes of glycogenolysis and glycolysis, we evaluated the activities of glycogen phosphorylase, phosphofructokinase, and pyruvate kinase in the presence or absence of 400 µM CPI-613. The CPI-613 treatment did not elicit an alteration in the activity of these three enzymes. These findings indicate that inhibiting PDH increases the rate of anaerobic glycolysis and pH decline, suggesting that mitochondria are potential regulators of postmortem metabolism.


Subject(s)
Glycogen , Glycolysis , Pyruvate Dehydrogenase Complex , Animals , Anaerobiosis , Glucose/metabolism , Glycogen/metabolism , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Mitochondria/metabolism , Postmortem Changes , Pyruvate Carboxylase/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Swine
2.
J Nutr ; 154(3): 908-920, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253226

ABSTRACT

BACKGROUND: Medium-chain fatty acids (MCFAs) are commonly used to enhance the caloric content of infant formulas. We previously reported that pigs fed MCFA developed hepatic steatosis when compared to those fed isocaloric long-chain fatty acid (LCFA) rich formula. OBJECTIVES: The objectives of this study were to investigate: 1) whether MCFA and LCFA feeding affect hepatic fatty acid oxidation, and 2) how fat type alters the expression of hepatic fatty acid metabolic genes. METHODS: Twenty-six, 7-d-old pigs were fed a low-energy control (CONT) formula, or 2 isocaloric high-energy formulas rich in LCFA or MCFA for 22 days. Livers were collected for examining ex vivo fatty acid oxidation, fatty acid content, and mRNA expression of fatty acid metabolic genes. RESULTS: Liver fat was 20% for pigs in the MCFA compared with 2.9% and 4.6% for those in the CONT and LCFA groups (P < 0.05). MCFA-fed pigs had greater amounts of hepatic laurate, myristate, palmitate, and palmitoleate (14, 34, 49, and 9.3 mg · g-1) than those fed LCFA and CONT (1.8, 1.9, 19, 1.5 mg · g-1) formulas (P ≤ 0.05). Hepatic laurate and palmitate oxidation was reduced for pigs fed MCFA (29 mmol · mg-1 · h-1) compared with those fed CONT (54 mmol · mg-1 · h-1) and LCFA (51 mmol · mg-1 · h-1) formulas (P < 0.05). Expression of fatty acid synthase 3 (FASN-3), fatty acid binding protein 1 (FABP-1), and acetyl-CoA carboxylase 1 (ACACA-1) were 8-, 6-, and 2-fold greater for pigs in the MCFA than those in the LCFA and CONT groups (P < 0.05). CONCLUSIONS: Feeding MCFA resulted in hepatic steatosis compared with an isocaloric formula rich in LCFA. Steatosis occurred concomitantly with reduced fatty acid oxidation but greater mRNA expression of fatty acid synthetic and catabolic genes.


Subject(s)
Fatty Liver , Laurates , Humans , Infant, Newborn , Animals , Swine , Laurates/metabolism , Fatty Acids/metabolism , Liver/metabolism , Fatty Liver/etiology , Fatty Liver/veterinary , Fatty Liver/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Palmitates/metabolism
3.
J Nutr ; 154(2): 638-647, 2024 02.
Article in English | MEDLINE | ID: mdl-38181968

ABSTRACT

BACKGROUND: Nutrition during fetal and neonatal life is an important determinant for the risk of adult-onset diseases, especially type 2 diabetes and obesity. OBJECTIVES: We aimed to determine whether total parenteral nutrition (TPN) compared with enteral formula feeding [enteral nutrition (EN)] in term piglets during the first 2 wk after birth would increase the long-term (5-mo) development of metabolic syndrome phenotypes with adverse glucose homeostasis, fatty liver disease, and obesity. METHODS: Neonatal female pigs were administered TPN (n = 12) or fed enterally with a liquid enteral milk-replacer formula (EN, n = 12) for 14 d. After transitioning TPN pigs to enteral feeding of liquid formula (days 15-26), both groups were adapted to a solid high-fat diet (30% of the total diet) and sucrose (20% of the total diet) diet (days 27-33), which was fed until the end of the study (140 d). Body composition was measured by dual-energy X-ray absorptiometry at 14, 45, and 140 d. Serum biochemistry and glucose-insulin values (after a fasting intravenous glucose tolerance test) were obtained at 140 d. Liver and muscle were analyzed for insulin receptor signaling and triglycerides. RESULTS: Body weight was similar, but percent fat was higher, whereas percent lean and bone mineral density were lower in TPN than in EN pigs (P < 0.01) at 45 d of age but not at 140 d. At 140 d, there were no differences in serum markers of liver injury or lipidemia. Intravenous glucose tolerance test at 140 d showed a lower (P < 0.05) AUC for both glucose and insulin in TPN than in EN pigs, but the ratio of AUCs of insulin and glucose was not different between groups. CONCLUSIONS: Administration of TPN during the neonatal period increased adipose deposition that transiently persisted in early adolescence when challenged with a high-fat diet but was not sustained or manifested as glucose intolerance.


Subject(s)
Diabetes Mellitus, Type 2 , Animals , Female , Swine , Animals, Newborn , Insulin , Glucose , Obesity , Phenotype
4.
Amino Acids ; 55(10): 1389-1404, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37743429

ABSTRACT

Postnatal muscle growth is impaired in low birth weight (L) neonatal pigs. Leucine supplementation has been established as a dietary intervention to enhance muscle growth in growing animals. The aim of this study was to investigate the efficacy of supplementing L neonatal pig formulas with branched-chain amino acids (B) to enhance the rate of protein accretion. Twenty-four 3-day old pigs were divided into two groups low (L) and normal birth weight (N) based on weight at birth. Pigs were assigned to a control (C) or 1% branched-chain amino acids (B) formulas, and fed at 250 mL·kg body weight -1·d-1 for 28 d. Body weight of pigs in the L group was less than those in the N group (P < 0.01). However, fractional body weight was greater for L pigs compared with their N siblings from day 24 to 28 of feeding regardless of formula (P < 0.01). In addition, feed efficiency (P < 0.0001) and efficiently of protein accretion (P < 0.0001) were greater for L than N pigs regardless of supplementation. Pigs fed the B formula had greater plasma leucine, isoleucine, and valine concentrations compared with those fed the C formula (P < 0.05). Longissimus dorsi Sestrin2 protein expression was less for pigs in the L group compared with those in the N group (P < 0.01), but did not result in a corresponding increase in translation initiation signaling. Longissimus dorsi mRNA expression of BCAT2 was less for LB pigs compared with those in the LC group, and was intermediate for NC and NB pigs (P < 0.05). Hepatic mRNA expression of BCKDHA was greater for pigs in the L compared with those in the N groups (P < 0.05). However, plasma branched-chain keto-acid concentration was reduced for C compared with those in the B group (P < 0.05). These data suggest that branched-chain amino acid supplementation does not improve lean tissue accretion of low and normal birth weight pigs, despite a reduction in Sestrin2 expression in skeletal muscle of low birth weight pigs. The modest improvement in fractional growth rate of low birth weight pigs compared with their normal birth weight siblings was likely due to a more efficient dietary protein utilization.


Subject(s)
Amino Acids, Branched-Chain , Muscle, Skeletal , Swine , Animals , Leucine/pharmacology , Leucine/metabolism , Birth Weight , Amino Acids, Branched-Chain/metabolism , Muscle, Skeletal/metabolism , Dietary Supplements , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animal Feed
5.
Microorganisms ; 11(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630670

ABSTRACT

Probiotics for humans and direct-fed microbials for livestock are increasingly popular dietary ingredients for supporting immunity. The aim of this study was to determine the effects of dietary supplementation of Bacillus subtilis MB40 (MB40) on immunity in piglets challenged with the foodborne pathogen Listeria monocytogenes (LM). Three-week-old piglets (n = 32) were randomly assigned to four groups: (1) basal diet, (2) basal diet with LM challenge, (3) MB40-supplemented diet, and (4) MB40-supplemented diet with LM challenge. Experimental diets were provided throughout a 14-day (d) period. On d8, piglets in groups 2 and 4 were intraperitoneally inoculated with LM at 108 CFU/mL per piglet. Blood samples were collected at d1, d8, and d15 for biochemical and immune response profiling. Animals were euthanized and necropsied at d15 for liver and spleen bacterial counts and intestinal morphological analysis. At d15, LM challenge was associated with increased spleen weight (p = 0.017), greater circulating populations of neutrophils (p = 0.001) and monocytes (p = 0.008), and reduced ileal villus height to crypt depth ratio (p = 0.009), compared to non-challenged controls. MB40 supplementation reduced LM bacterial counts in the liver and spleen by 67% (p < 0.001) and 49% (p < 0.001), respectively, following the LM challenge, compared to the basal diet. MB40 supplementation was also associated with decreased circulating concentrations of monocytes (p = 0.007). Altogether, these data suggest that MB40 supplementation is a safe and well-tolerated approach to enhance immunity during systemic Listeria infection.

6.
Am J Physiol Gastrointest Liver Physiol ; 325(2): G135-G146, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37280515

ABSTRACT

Medium-chain fatty acids (MCFA) and long-chain fatty acids (LCFAs) are often added to enhance the caloric value of infant formulas. Evidence suggests that MCFAs promote growth and are preferred over LCFAs due to greater digestibility and ease of absorption. Our hypothesis was that MCFA supplementation would enhance neonatal pig growth to a greater extent than LCFAs. Neonatal pigs (n = 4) were fed a low-energy control (CONT) or two isocaloric high-energy formulas containing fat either from LCFAs, or MCFAs for 20 days. Pigs fed the LCFAs had greater body weight compared with CONT- and MCFA-fed pigs (P < 0.05). In addition, pigs fed the LCFAs and MCFAs had more body fat than those in the CONT group. Liver and kidney weights as a percentage of body weight were greater (P ≤ 0.05) for pigs fed the MCFAs than those fed the CONT formula, and in those fed LCFAs, liver and kidney weights as a percentage of body weight were intermediate (P ≤ 0.05). Pigs in the CONT and LCFA groups had less liver fat (12%) compared with those in the MCFA (26%) group (P ≤ 0.05). Isolated hepatocytes from these pigs were incubated in media containing [13C]tracers of alanine, glucose, glutamate, and propionate. Our data suggest alanine contribution to pyruvate is less in hepatocytes from LCFA and MCFA pigs than those in the CONT group (P < 0.05). These data suggest that a formula rich in MCFAs caused steatosis compared with an isocaloric LCFA formula. In addition, MCFA feeding can alter hepatocyte metabolism and increase total body fat without increasing lean deposition.NEW & NOTEWORTHY Our data suggest that feeding high-energy MCFA formula resulted in hepatic steatosis compared with isoenergetic LCFA or low-energy formulas. Steatosis coincided with greater laurate, myristate, and palmitate accumulation, suggesting elongation of dietary laurate. Data also suggest that hepatocytes metabolized alanine and glucose to pyruvate, but neither entered the tricarboxylic acid (TCA) cycle. In addition, the contribution of alanine and glucose was greater for the low-energy formulas compared with the high-energy formulas.


Subject(s)
Fatty Liver , Laurates , Animals , Swine , Fatty Acids/metabolism , Fatty Liver/etiology , Glucose , Pyruvates , Body Weight
7.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36219104

ABSTRACT

Although it has long been known that growth media withdrawal is a prerequisite for myoblast differentiation and fusion, the underpinning molecular mechanism remains somewhat elusive. Using isolated porcine muscle satellite cells (SCs) as the model, we show elevated O-GlcNAcylation by O-GlcNAcase (OGA) inhibition impaired SC differentiation (D5 P < 0.0001) but had unnoticeable impacts on SC proliferation. To explore the mechanism of this phenotype, we examined the expression of the transcription factor myogenin, a master switch of myogenesis, and found its expression was downregulated by elevated O-GlcNAcylation. Because insulin/IGF-1/Akt axis is a strong promoter of myoblast fusion, we measured the phosphorylated Akt and found that hyper O-GlcNAcylation inhibited Akt phosphorylation, implying OGA inhibition may also work through interfering with this critical differentiation-promoting pathway. In contrast, inhibition of O-GlcNAc transferase (OGT) by its specific inhibitor had little impact on either myoblast proliferation or differentiation (P > 0.05). To confirm these in vitro findings, we used chemical-induced muscle injury in the pig as a model to study muscle regenerative myogenesis and showed how O-GlcNAcylation functions in this process. We show a significant decrease in muscle fiber cross sectional area (CSA) when OGA is inhibited (P < 0.05), compared to nondamaged muscle, and a significant decrease compared to control and OGT inhibited muscle (P < 0.05), indicating a significant impairment in porcine muscle regeneration in vivo. Together, the in vitro and in vivo data suggest that O-GlcNAcylation may serve as a nutrient sensor during SC differentiation by gauging cellular nutrient availability and translating these signals into cellular responses. Given the importance of nutrition availability in lean muscle growth, our findings may have significant implications on how muscle growth is regulated in agriculturally important animals.


Cells use a variety of post translational modifications (PTMs) as a mechanism to transduce extracellular signals and adapt their behaviors in response to intracellular nutrient abundance. O-GlcNAcylation, the addition of single sugars to a protein's serine/threonine residues, has been established as a nutrient sensing PTM in a wide range of cell types. Here, we show the functional importance O-GlcNAcylation in porcine myogenesis. We used isolated porcine satellite cells as the model and pharmacological inhibitors to O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) as the tool to study the role of O-GlcNAcylation in porcine myogenesis. Our data show that although O-GlcNAcylation does not play a significant role in muscle cell proliferation, low level of O-GlcNAcylation is critical for muscle cell differentiation. We demonstrate that inhibition of OGA leads to higher level of O-GlcNAcylation and inhibition of myoblast fusion even though the growth medium (high nutrients) has been shifted to the differentiation medium (low nutrients). Together, these data show that porcine muscle cells use O-GlcNAcylation to sense the cellular nutrient levels and adjust their fate in accordance with the strength of the O-GlcNAcylation signals.


Subject(s)
Muscle Development , Proto-Oncogene Proteins c-akt , Animals , Swine , Muscle Development/physiology , Myoblasts , Cell Differentiation/physiology , Phosphorylation
8.
J Anim Sci ; 100(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35908791

ABSTRACT

Substantial economic losses in animal agriculture result from animals experiencing heat stress (HS). Pigs are especially susceptible to HS, resulting in reductions in growth, altered body composition, and compromised substrate metabolism. In this study, an artificial high-intensity sweetener and capsaicin (CAPS-SUC; Pancosma, Switzerland) were supplemented in combination to mitigate the adverse effects of HS on pig performance. Forty cross-bred barrows (16.2 ± 6 kg) were assigned to one of five treatments: thermal neutral controls (TN) (22 ± 1.2 °C; 38%-73% relative humidity) with ad libitum feed, HS conditions with ad libitum feed with (HS+) or without (HS-) supplementation, and pair-fed to HS with (PF+) or without supplementation (PF-). Pigs in heat-stressed treatments were exposed to a cyclical environmental temperature of 12 h at 35 ± 1.2 °C with 27%-45% relative humidity and 12 h at 30 ± 1.1 °C with 24%-35% relative humidity for 21 d. Supplementation (0.1 g/kg feed) began 7 d before and persisted through the duration of environmental or dietary treatments (HS/PF), which lasted for 21 d. Rectal temperatures and respiration rates (RR; breaths/minute) were recorded thrice daily, and feed intake (FI) was recorded daily. Before the start and at the termination of environmental treatments (HS/PF), a muscle biopsy of the longissimus dorsi was taken for metabolic analyses. Blood samples were collected weekly, and animals were weighed every 3 d during treatment. Core temperature (TN 39.2 ± 0.02 °C, HS- 39.6 ± 0.02 °C, and HS+ 39.6 ± 0.02 °C, P < 0.001) and RR (P < 0.001) were increased in both HS- and HS+ groups, but no difference was detected between HS- and HS+. PF- pigs exhibited reduced core temperature (39.1 ± 0.02 °C, P < 0.001), which was restored in PF+ pigs (39.3 ± 0.02 °C) to match TN. Weight gain and feed efficiency were reduced in PF- pigs (P < 0.05) but not in the PF+ or the HS- or HS+ groups. Metabolic flexibility was decreased in the HS- group (-48.4%, P < 0.05) but maintained in the HS+ group. CAPS-SUC did not influence core temperature or weight gain in HS pigs but did restore core temperature, weight gain, and feed efficiency in supplemented PF pigs. In addition, supplementation restored metabolic flexibility during HS and improved weight gain and feed efficiency during PF, highlighting CAPS-SUC's therapeutic metabolic effects.


Heat stress reduces pig performance due to metabolic responses to heat. During heat stress, pigs lose the ability to metabolize fatty acids for energy and rely on carbohydrates to fuel growth. Evidence has shown that capsaicin, the active ingredient in chili peppers, interacts with heat-sensing receptors to protect against heat stress by preventing changes to metabolism. Artificial sweeteners can also preserve fat metabolism by inducing the secretion of metabolic regulatory hormones from the gut. This study examined a combination of capsaicin and artificial sweetener to restore growth and maintain metabolism during 3 wk of heat stress. As pigs often reduce their feed intake during heat stress, a group of pigs was feed restricted to match the reduced feeding observed in the heat-stressed pigs. Pigs given the feed supplement during heat stress maintained their metabolic flexibility, a measure of metabolic health. In agreement with previous short-term studies, the capsaicin and artificial sweetener supplement improved feed efficiency and weight gain in feed-restricted pigs. This study demonstrated that supplementation with capsaicin and artificial sweetener may prevent metabolic dysfunction during heat stress. This study also confirmed that supplementation with capsaicin and artificial sweetener does improve feed-restricted pigs' growth and feed efficiency.


Subject(s)
Heat Stress Disorders , Swine Diseases , Animal Feed/analysis , Animals , Body Temperature/physiology , Capsaicin/analysis , Capsaicin/pharmacology , Dietary Supplements/analysis , Heat Stress Disorders/veterinary , Heat-Shock Response/physiology , Hot Temperature , Sweetening Agents , Swine , Weight Gain
9.
J Nutr ; 151(9): 2636-2645, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34159368

ABSTRACT

BACKGROUND: Nutrition administered as intermittent bolus feeds rather than continuously promotes greater protein synthesis rates in skeletal muscle and enhances lean growth in a neonatal piglet model. The molecular mechanisms responsible remain unclear. OBJECTIVES: We aimed to identify the insulin- and/or amino acid-signaling components involved in the enhanced stimulation of skeletal muscle by intermittent bolus compared to continuous feeding in neonatal pigs born at term. METHODS: Term piglets (2-3 days old) were fed equal amounts of sow milk replacer [12.8 g protein and 155 kcal/(kg body weight · d)] by orogastric tube as intermittent bolus meals every 4 hours (INT) or by continuous infusion (CTS). After 21 days, gastrocnemius muscle samples were collected from CTS, INT-0 (before a meal), and INT-60 (60 minutes after a meal) groups (n = 6/group). Insulin- and amino acid-signaling components relevant to mechanistic target of rapamycin complex (mTORC) 1 activation and protein translation were measured. RESULTS: Phosphorylation of the insulin receptor, IRS-1, PDK1, mTORC2, pan-Akt, Akt1, Akt2, and TSC2 was 106% to 273% higher in the skeletal muscle of INT-60 piglets than in INT-0 and CTS piglets (P  < 0.05), but phosphorylation of PTEN, PP2A, Akt3, ERK1/2, and AMPK did not differ among groups, nor did abundances of PHLPP, SHIP2, and Ubl4A. The association of GATOR2 with Sestrin1/2, but not CASTOR1, was 51% to 52% lower in INT-60 piglets than in INT-0 and CTS piglets (P  < 0.05), but the abundances of SLC7A5/LAT1, SLC38A2/SNAT2, SLC38A9, Lamtor1/2, and V-ATPase did not differ. Associations of mTOR with RagA, RagC, and Rheb and phosphorylation of S6K1 and 4EBP1, but not eIF2α and eEF2, were 101% to 176% higher in INT-60 piglets than in INT-0 and CTS piglets (P < 0.05). CONCLUSIONS: The enhanced rates of muscle protein synthesis and growth with intermittent bolus compared to continuous feeding in a neonatal piglet model can be explained by enhanced activation of both the insulin- and amino acid-signaling pathways that regulate translation initiation.


Subject(s)
Amino Acids , Insulin , Amino Acids/metabolism , Animals , Animals, Newborn , Female , Insulin/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Swine
10.
Meat Sci ; 172: 108316, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32971310

ABSTRACT

The purpose of this study was to test mitochondrial functionality under conditions simulating postmortem metabolism. Isolated mitochondria from porcine longissimus lumborum (LLM) and masseter (MM) muscles were incorporated into an in vitro model that mimics postmortem metabolism. pH and 13C-enrichment of glycolytic and tricarboxylic acid (TCA) cycle intermediates were evaluated at 0, 15, 30, 120, 240, and 1440 min. Addition of mitochondria to the in vitro model lowered its pH at 240 min compared with control. Reactions containing mitochondria had lower pyruvate and lactate [M + 2] and [M + 3] isotopomers at 240 and 1440 min than controls. Furthermore, LLM lowered the enrichment of [M + 2], [M + 3], and [M + 4]α-ketoglutarate at 1440 min compared with MM and control. Succinate [M + 2] and [M + 3] were greater in MM than the control and LLM. [M + 3]fumarate was greater in control at 240 and 1440 min than LLM and MM treatments. Our data indicated that mitochondria are capable of mobilizing pyruvate generated though glycolysis under conditions simulating muscle postmortem metabolism.


Subject(s)
Citric Acid Cycle/physiology , Glycolysis/physiology , Mitochondria/metabolism , Swine/metabolism , Animals , Hydrogen-Ion Concentration , Muscle, Skeletal/metabolism , Postmortem Changes
11.
Curr Dev Nutr ; 4(12): nzaa170, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33381676

ABSTRACT

BACKGROUND: Orogastric tube feeding is frequently prescribed for neonates who cannot ingest food normally. In a piglet model of the neonate, greater skeletal muscle growth is sustained by upregulation of translation initiation signaling when nutrition is delivered by intermittent bolus meals, rather than continuously. OBJECTIVES: The objective of this study was to determine the long-term effects of feeding frequency on organ growth and the mechanism by which feeding frequency modulates protein anabolism in these organs. METHODS: Eighteen neonatal pigs were fed by gastrostomy tube the same amount of a sow milk replacer either by continuous infusion (CON) or on an intermittent bolus schedule (INT). After 21 d of feeding, the pigs were killed without interruption of feeding (CON; n = 6) or immediately before (INT-0; n = 6) or 60 min after (INT-60; n = 6) a meal, and fractional protein synthesis rates and activation indexes of signaling pathways that regulate translation initiation were measured in the heart, jejunum, ileum, kidneys, and liver. RESULTS: Compared with continuous feeding, intermittent feeding stimulated the growth of the liver (+64%), jejunum (+48%), ileum (+40%), heart (+64%), and kidney (+56%). The increases in heart, kidney, jejunum, and ileum masses were proportional to whole body lean weight gain, but liver weight gain was greater in the INT-60 than the CON, and intermediate for the INT-0 group. For the liver and ileum, but not the heart, kidney, and jejunum, INT-60 compared with CON pigs had greater fractional protein synthesis rates (22% and 48%, respectively) and was accompanied by an increase in ribosomal protein S6 kinase 1 and eukaryotic initiation factor 4E binding protein 1 phosphorylation. CONCLUSIONS: These results suggest that intermittent bolus compared with continuous orogastric feeding enhances organ growth and that in the ileum and liver, intermittent feeding enhances protein synthesis by stimulating translation initiation.

12.
J Nutr ; 149(6): 933-941, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31149711

ABSTRACT

BACKGROUND: Low-birth-weight (LBWT) neonates grow at a slower rate than their normal-birth-weight (NBWT) counterparts and may develop hypoglycemia postnatally. OBJECTIVE: We investigated whether dietary lipid supplementation would enhance growth and improve glucose production in LBWT neonatal pigs. METHODS: Twelve 3-d-old NBWT (1.606 kg) crossbred pigs were matched to 12 LBWT (1.260 kg) same-sex littermates. At 6 d of age, 6 pigs in each group were fed a low-energy (LE) or a high-energy (HE) isonitrogenous formula containing 5.2% and 7.3% fat, respectively. Body composition was assessed using dual-energy X-ray absorptiometry; plasma glucose and glycerol kinetics were assessed using stable isotope tracers. After killing, weights of skeletal muscles and visceral organs were measured. Data were analyzed by ANOVA for a 2 × 2 factorial design; temporal effects were investigated using repeated-measures analysis. RESULTS: Lipid supplementation did not affect body weight of LBWT or NBWT pigs. However, liver and longissimus dorsi weights as a percentage of body weight were greater for pigs fed an HE diet than for those fed an LE diet (4.3% compared with 3.4% and 1.5% compared with 1.2%, respectively) but remained less for LBWT than for NBWT pigs (3.8% compared with 3.9% and 1.3% compared with 1.5%, respectively) (P < 0.05). In addition, hepatic fat content increased (7.9 compared with 2.6 g) in pigs fed the HE compared with those fed the LE formula (P < 0.05). Lipid supplementation did not influence plasma glucose concentration which remained lower in the LBWT than in the NBWT group (4.1 compared with 4.5 mmol/L) (P < 0.05). CONCLUSIONS: Our data suggest that lipid supplementation modestly improved growth of skeletal muscle and the liver but did not affect glucose homeostasis in all groups, and glucose concentration remained lower in LBWT than in NBWT pigs. These data suggest that the previously reported hyperglycemic effect of lipid supplementation may depend on the route of administration or age of the neonatal pig.


Subject(s)
Birth Weight/physiology , Blood Glucose/metabolism , Dietary Fats/administration & dosage , Muscle, Skeletal/growth & development , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Body Composition , Female , Glycerol/blood , Kinetics , Lipids/administration & dosage , Liver/growth & development , Liver/metabolism , Male , Organ Size , Pregnancy , Sus scrofa
13.
Am J Clin Nutr ; 108(4): 830-841, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30239549

ABSTRACT

Background: Orogastric tube feeding is indicated in neonates with an impaired ability to ingest food normally and can be administered with an intermittent bolus or continuous feeding schedule. Objectives: The objectives were to 1) compare the long-term effect of continuous with intermittent feeding on growth using the newborn pig as a model, 2) determine whether feeding frequency alters lean tissue and fat mass gain, and 3) identify the signaling mechanisms by which protein deposition is controlled in skeletal muscle in response to feeding frequency. Design: Neonatal pigs were fed the same amount of a balanced formula by orogastric tube either as an intermittent bolus meal every 4 h (INT) or as a continuous infusion (CON). Body composition was assessed at the start and end of the study by dual-energy X-ray absorptiometry, and hormone and substrate profiles, muscle mass, protein synthesis, and indexes of nutrient and insulin signaling were measured after 21 d. Results: Body weight, lean mass, spine length, and skeletal muscle mass were greater in the INT group than in the CON group. Skeletal muscle fractional protein synthesis rates were greater in the INT group after a meal than in the CON group and were associated with higher circulating branched-chain amino acid and insulin concentrations. Skeletal muscle protein kinase B (PKB) and ribosomal protein S6 kinase phosphorylation and eukaryotic initiation factor (eIF) 4E-eIF4G complex formation were higher, whereas eIF2α phosphorylation was lower in the INT group than in the CON group, indicating enhanced activation of insulin and amino acid signaling to translation initiation. Conclusions: These results suggest that when neonates are fed the same amounts of nutrients as intermittent meals rather than continuously there is greater lean growth. This response can be ascribed, in part, to the pulsatile pattern of amino acids, insulin, or both induced by INT, which enables the responsiveness of anabolic pathways to feeding to be sustained chronically in skeletal muscle.


Subject(s)
Body Composition/physiology , Body Fluid Compartments/physiology , Feeding Behavior/physiology , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Protein Biosynthesis , Weight Gain/physiology , Adipose Tissue/metabolism , Amino Acids/blood , Animals , Animals, Newborn/growth & development , Body Fluid Compartments/metabolism , Energy Intake , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Female , Humans , Infant, Newborn , Insulin/blood , Muscle, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases/metabolism , Signal Transduction , Spine/growth & development , Swine
14.
Am J Physiol Regul Integr Comp Physiol ; 315(6): R1096-R1106, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30256682

ABSTRACT

Heat-stressed pigs experience metabolic alterations, including altered insulin profiles, reduced lipid mobilization, and compromised intestinal integrity. This is bioenergetically distinct from thermal neutral pigs on a similar nutritional plane. To delineate differences in substrate preferences between direct and indirect (via reduced feed intake) heat stress effects, skeletal muscle fuel metabolism was assessed. Pigs (35.3 ± 0.8 kg) were randomly assigned to three treatments: thermal neutral fed ad libitum (TN; 21°C, n = 8), heat stress fed ad libitum (HS; 35°C, n = 8), and TN, pair-fed/HS intake (PF; n = 8) for 7 days. Body temperature (TB) and feed intake (FI) were recorded daily. Longissimus dorsi muscle was biopsied for metabolic assays on days -2, 3, and 7 relative to initiation of environmental treatments. Heat stress increased TB and decreased FI ( P < 0.05). Heat stress inhibited incomplete fatty acid oxidation and glucose oxidation ( P < 0.05). Metabolic flexibility decreased in HS pigs compared with TN and PF controls ( P < 0.05). Both phosphofructokinase and pyruvate dehydrogenase (PDH) activities increased in PF ( P < 0.05); however, TN and HS did not differ. Heat stress inhibited citrate synthase and ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activities ( P < 0.05). Heat stress did not alter PDH phosphorylation or carnitine palmitoyltransferase 1 abundance but reduced acetyl-CoA carboxylase 1 (ACC1) protein abundance ( P < 0.05). In conclusion, HS decreased skeletal muscle fatty acid oxidation and metabolic flexibility, likely involving ß-HAD and ACC regulation.


Subject(s)
Body Temperature/physiology , Heat Stress Disorders , Heat-Shock Response/physiology , Muscle, Skeletal/metabolism , Animal Nutritional Physiological Phenomena/physiology , Animals , Dietary Supplements/adverse effects , Eating/physiology , Stress, Physiological/physiology , Swine/growth & development
15.
J Appl Physiol (1985) ; 125(4): 1171-1182, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30070606

ABSTRACT

Muscle hypertrophy is limited in low birth weight (LBWT) neonates, suggesting a reduction in protein synthesis and increased protein degradation. Sixteen pairs of one-day-old normal birth weight (NBWT) and LBWT littermates (n = 16) were euthanized, and the longissimus dorsi (LD) was sampled for protein abundance and kinase phosphorylation profile measures. Eukaryotic initiation factor (eIF)4E and eIF4G abundance, and assembly of the active eIF4E-eIF4G complex, was less for LBWT than for NBWT pig muscles. Similarly, eIF3f abundance was reduced in the muscle of LBWT compared with NBWT pigs and was associated with diminished ribosomal protein S6 kinase 1 phosphorylation. This decrease was linked to a lower phosphorylation of programmed cell death protein 4 (PDCD4) in LBWT pig muscle. By contrast, PDCD4 abundance was greater in the muscle of the LBWT than NBWT group, suggesting lower release and availability of eIF4A from the PDCD4-eIF4A complex. Moreover, protein abundance of eIF4A was lower in LBWT muscle, which is expected to further impair the formation of eIF4F translation initiation complex. Microtubule-associated light chain 3 (LC3) II to total LC3 ratio was greater in LBWT LD lysates, yet P62 abundance was similar between the two groups, suggesting no difference in autophagy. Muscle atrophy F-box (atrogin-1) abundance was less in LBWT LD lysates, suggesting decreased degradation through the ubiquitin-proteasome system. In conclusion, limited eIF4F subunit abundance and downregulated translation initiation are plausible mechanisms for diminished muscle growth in LBWT compared with NBWT neonatal pigs.NEW & NOTEWORTHY We demonstrated that eukaryotic initiation factor (eIF)4E, eIF4G, and eIF4A abundance, and assembly of the active eIF4E-eIF4G complex, were reduced in low birth weight (LBWT) compared with normal birth weight pig muscle. In contrast, our data indicated that protein degradation signaling does not seem to affect protein turnover in LBWT pig muscle. Thus, downregulated translation initiation is likely the key contributor that predisposes LBWT neonatal pigs to slower postnatal muscle growth.

16.
Front Physiol ; 8: 482, 2017.
Article in English | MEDLINE | ID: mdl-28744224

ABSTRACT

Low-birth-weight (LBWT) neonates experience restricted muscle growth in their perinatal life. Our aim was to investigate the mechanisms that contribute to slower skeletal muscle growth of LBWT neonatal pigs. Twenty-four 1-day old male LBWT (816 ± 55 g) and normal-birth-weight (NBWT; 1,642 ± 55 g) littermates (n = 12) were euthanized to collect blood and longissimus dorsi (LD) muscle subsamples. Plasma glucose, insulin, and insulin-like growth factor-I (IGF-I) were lower in LBWT compared with NBWT pigs. Muscle IGF-I mRNA expression were lower in LBWT than NBWT pigs. However, IGF-I receptor mRNA and protein abundance was greater in LD of LBWT pigs. Abundance of myostatin and its receptors, and abundance and phosphorylation of smad3 were lower in LBWT LD by comparison with NBWT LD. Abundance of eukaryotic initiation factor (eIF) 4E binding protein 1 and mitogen-activated protein kinase-interacting kinases was lower in muscle of LBWT pigs compared with NBWT siblings, while eIF4E abundance and phosphorylation did not differ between the two groups. Furthermore, phosphorylation of ribosomal protein S6 kinase 1 (S6K1) was less in LBWT muscle, possibly due to lower eIF3e abundance. In addition, abundance and phosphorylation of eIF4G was reduced in LBWT pigs by comparison with NBWT littermates, suggesting translation initiation complex formation is compromised in muscle of LBWT pigs. In conclusion, diminished S6K1 activation and translation initiation signaling are likely the major contributors to impaired muscle growth in LBWT neonatal pigs. The upregulated IGF-I R expression and downregulated myostatin signaling seem to be compensatory responses for the reduction in protein synthesis signaling.

17.
Poult Sci ; 96(7): 2083-2090, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28339728

ABSTRACT

Host defense peptides (HDPs) are a large group of small, positively charged peptides that play an important role in innate immunity, particularly at early ages when other components of the immune system have not fully developed. There are 3 classes of avian HDPs: avian beta defensins (AvBDs), cathelicidins (Cath), and liver-expressed antimicrobial peptide 2 (LEAP-2). The objective was to compare expression of HDP mRNAs in male turkey poults at day of hatch (d 0), d 7, d 14, d 21 and d 28 from the thymus, spleen, bursa, duodenum, jejunum, and ileum. The expression of AvBD1, AvBD2, AvBD8, AvBD9, AvBD10, AvBD13, Cath2, Cath3, and LEAP-2 mRNA was measured using qPCR (n = 6 birds/tissue/age). Data were analyzed by one-way ANOVA and Tukey's test, and significance considered at P < 0.05. AvBDs and Caths exhibited greater expression in immune organs (thymus, spleen, and bursa) than intestinal tissues. In the thymus, expression of all AvBDs examined, except AvBD8, showed an increase from d 0 to d 21. In the spleen, AvBD1 and AvBD2 exhibited reduced expression from d 0 to d 7 and low expression thereafter. In the intestine, AVBD1, AVBD8, and AvBD13 increased expression from d 0 to d 28 in the duodenum, while AvBD10 showed the greatest expression at d 0 that declined to d 7 and stayed low thereafter in the duodenum, jejunum, and ileum. Cath2 and Cath3 demonstrated the highest expression in the spleen, which was greatest at d 0 then declined to d 7 through d 28. Conversely, LEAP-2 showed greater expression in the intestinal tissues than in the immune organs. LEAP-2 expression was upregulated from d 0 to d 7 and then remained elevated from d 7 through d 14 in the duodenum. In the jejunum, LEAP-2 increased from d 0 to d 21 and d 28. Understanding the differential expression of HDPs could reveal the innate immune status of turkey poults, and may subsequently allow improvement of their health through appropriate mitigation strategies.


Subject(s)
Avian Proteins/genetics , Gene Expression , Immunity, Innate , Intestine, Small/metabolism , Lymphoid Tissue/metabolism , Turkeys/genetics , Animals , Avian Proteins/metabolism , Cathelicidins/genetics , Cathelicidins/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Male , Turkeys/growth & development , Turkeys/metabolism , beta-Defensins/genetics , beta-Defensins/metabolism
18.
Physiol Rep ; 5(3)2017 Feb.
Article in English | MEDLINE | ID: mdl-28183860

ABSTRACT

Low birth weight (LBWT) is consistently associated with impaired postnatal muscle growth in mammals. Satellite cell (SC)-mediated myonuclear incorporation precedes protein accumulation in the early stages of postnatal muscle development and growth. The objective of this study was to investigate proliferation and differentiation of SCs and the regulation of protein synthesis signaling in response to insulin-like growth factor (IGF)-I stimulation in SC-derived myotubes of LBWT neonatal pigs. SCs isolated from Longissimus dorsi muscle of LBWT and NBWT pigs (3-d-old, n = 8) were cultured and induced to proliferate and differentiate to myotubes in vitro. On day 3 of differentiation, myotubes were fasted in serum-free media for 3 h and treated with human recombinant R3-insulin-like growth factor-I (rh IGF-I) at 0, 25, and 50 ng × mL-1 for 30 min. There was no difference in proliferation rates of SCs from LBWT and NBWT pigs. However, LBWT SC fusion was 15% lower (P ≤ 0.05) without a difference in MyoD or myogenin mRNA expression in comparison with NBWT pigs, suggesting SCs are not intrinsically different between the two groups. IGF-Ι stimulation at physiological concentrations activated downstream effectors of mTOR similarly in myotubes from LBWT and NBWT pigs. However, abundance of ribosomal protein S6 kinase 1(S6K1) was lower in myotubes of LBWT compared to their NBWT siblings (P ≤ 0.05). These results indicate that the modest reduction in SC fusion and S6K1 expression are not the major contributors to the impaired postnatal muscle growth of LBWT pigs.


Subject(s)
Birth Weight , Cell Differentiation , Cell Fusion , Cell Proliferation , Muscle Fibers, Skeletal/metabolism , Ribosomal Protein S6 Kinases/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Animals , Animals, Newborn , Female , Male , Primary Cell Culture , Signal Transduction , Swine
19.
Am J Physiol Endocrinol Metab ; 310(8): E699-E713, 2016 04 15.
Article in English | MEDLINE | ID: mdl-26884386

ABSTRACT

Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 µmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.


Subject(s)
Leucine/pharmacology , Muscle Proteins/drug effects , Muscle, Skeletal/drug effects , Protein Biosynthesis/drug effects , Alanine/pharmacology , Amino Acid Transport System A/drug effects , Amino Acid Transport System A/metabolism , Animals , Animals, Newborn , Back Muscles , Dietary Supplements , Enteral Nutrition , Infusions, Parenteral , Leucine/administration & dosage , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Multiprotein Complexes/drug effects , Multiprotein Complexes/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/drug effects , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Ribosomal Proteins/drug effects , Ribosomal Proteins/genetics , Sus scrofa , Swine , TOR Serine-Threonine Kinases/drug effects , TOR Serine-Threonine Kinases/metabolism
20.
Am J Physiol Endocrinol Metab ; 306(1): E91-9, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24192287

ABSTRACT

Many low-birth-weight infants experience failure to thrive. The amino acid leucine stimulates protein synthesis in skeletal muscle of the neonate, but less is known about the effects of the leucine metabolite ß-hydroxy-ß-methylbutyrate (HMB). To determine the effects of HMB on protein synthesis and the regulation of translation initiation and degradation pathways, overnight-fasted neonatal pigs were infused with HMB at 0, 20, 100, or 400 µmol·kg body wt(-1)·h(-1) for 1 h (HMB 0, HMB 20, HMB 100, or HMB 400). Plasma HMB concentrations increased with infusion and were 10, 98, 316, and 1,400 nmol/ml in the HMB 0, HMB 20, HMB 100, and HMB 400 pigs. Protein synthesis rates in the longissimus dorsi (LD), gastrocnemius, soleus, and diaphragm muscles, lung, and spleen were greater in HMB 20 than in HMB 0, and in the LD were greater in HMB 100 than in HMB 0. HMB 400 had no effect on protein synthesis. Eukaryotic initiation factor (eIF)4E·eIF4G complex formation and ribosomal protein S6 kinase-1 and 4E-binding protein-1 phosphorylation increased in LD, gastrocnemius, and soleus muscles with HMB 20 and HMB 100 and in diaphragm with HMB 20. Phosphorylation of eIF2α and elongation factor 2 and expression of system A transporter (SNAT2), system L transporter (LAT1), muscle RING finger 1 protein (MuRF1), muscle atrophy F-box (atrogin-1), and microtubule-associated protein light chain 3 (LC3-II) were unchanged. Results suggest that supplemental HMB enhances protein synthesis in skeletal muscle of neonates by stimulating translation initiation.


Subject(s)
Animals, Newborn/metabolism , Muscle Proteins/biosynthesis , Muscle, Skeletal/metabolism , Protein Biosynthesis/drug effects , Sus scrofa/metabolism , Valerates/administration & dosage , Animals , Autophagy/drug effects , Leucine/metabolism , Muscle, Skeletal/chemistry , Peptide Initiation Factors/analysis , Peptide Initiation Factors/metabolism , Phosphorylation/drug effects , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Valerates/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...