Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 21(1): 169, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38108957

ABSTRACT

BACKGROUND: Lactobacillus delbrueckii was one of the most common milk lactic acid bacterial strains (LAB) which characterized as probiotic with many health influencing properties. RESULTS: Among seven isolates, KH1 isolate was the best producer of folic acid with 100 µg/ml after 48 h of incubation; FolE gene expression after 24 h of incubation was in the highest value in case of KH1 with three folds. Lactose was the best carbon source for this KH1, besides the best next isolates KH80 and KH98. The selected three LAB isolates were identified through 16S rDNA as Lactobacillus delbrueckii. These three isolates have high tolerance against acidic pH 2-3; they give 45, 10, and 22 CFUs at pH 3, besides 9, 6, and 4 CFUs at pH2, respectively. They also have resistance against elevated bile salt range 0.1-0.4%. KH1 recorded 99% scavenging against 97.3% 1000 µg/ml ascorbic acid. Docking study exhibits the binding mode of folic acid which exhibited an energy binding of - 8.65 kcal/mol against DHFR. Folic acid formed four Pi-alkyl, Pi-Pi, and Pi-sigma interactions with Ala9, Ile7, Phe34, and Ile60. Additionally, folic acid interacted with Glu30 and Asn64 by three hydrogen bonds with 1.77, 1.76, and 1.96 Å. CONCLUSION: LAB isolates have probiotic properties, antioxidant activity, and desired organic natural source for folic acid supplementation that improve hemoglobin that indicated by docking study interaction.

2.
Biomolecules ; 13(12)2023 11 21.
Article in English | MEDLINE | ID: mdl-38136556

ABSTRACT

The antimicrobial resistance of pathogenic microorganisms against commercial drugs has become a major problem worldwide. This study is the first of its kind to be carried out in Egypt to produce antimicrobial pharmaceuticals from isolated native taxa of the fungal Chaetomium, followed by a chemical investigation of the existing bioactive metabolites. Here, of the 155 clinical specimens in total, 100 pathogenic microbial isolates were found to be multi-drug resistant (MDR) bacteria. The Chaetomium isolates were recovered from different soil samples, and wild host plants collected from Egypt showed strong inhibitory activity against MDR isolates. Chaetomium isolates displayed broad-spectrum antimicrobial activity against C. albicans, Gram-positive, and Gram-negative bacteria, with inhibition zones of 11.3 to 25.6 mm, 10.4 to 26.0 mm, and 10.5 to 26.5 mm, respectively. As a consecutive result, the minimum inhibitory concentration (MIC) values of Chaetomium isolates ranged from 3.9 to 62.5 µg/mL. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) analysis was performed for selected Chaetomium isolates with the most promising antimicrobial potential against MDR bacteria. The LC-MS/MS analysis of Chaetomium species isolated from cultivated soil at Assuit Governate, Upper Egypt (3), and the host plant Zygophyllum album grown in Wadi El-Arbaein, Saint Katherine, South Sinai (5), revealed the presence of alkaloids as the predominant bioactive metabolites. Most detected bioactive metabolites previously displayed antimicrobial activity, confirming the antibacterial potential of selected isolates. Therefore, the Chaetomium isolates recovered from harsh habitats in Egypt are rich sources of antimicrobial metabolites, which will be a possible solution to the multi-drug resistant bacteria tragedy.


Subject(s)
Anti-Infective Agents , Chaetomium , Chaetomium/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Anti-Infective Agents/metabolism , Anti-Bacterial Agents/chemistry , Bacteria/metabolism , Microbial Sensitivity Tests , Soil
3.
RSC Adv ; 12(28): 18022-18038, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35874032

ABSTRACT

According to WHO warnings, the antibiotic resistance crisis is a severe health issue in the 21st century, attributed to the overuse and misuse of these medications. Consequently, the dramatic spreading rate of the drug-resistant microbial pathogens strains. The microbiological, biochemical tests and antibiotic sensitivity identified the bacteria's multi-drug resistance (MDR). About 150 different clinical samples were taken from hospitalized patients, both males, and females, ranging from 9 to 68 years. Gram-negative strains were (70.0%), while Gram-positive isolates were (30.0%). Among sixteen antibiotics, antibiotic susceptibility of imipenem was found to be the most efficient drug against most of the Gram-negative and Gram-positive isolates, followed by meropenem, depending on the culture and sensitivity results. All the experimental bacteria showed multidrug-resistant phenomena. In this study, green synthesized silver (Cur-Ag NPs) and zinc oxide (Cur-ZnO NPs) nanoparticles in the presence of curcumin extract. In addition, their physicochemical properties have been characterized using different techniques such as UV-Vis spectroscopy, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and colloidal properties techniques. Furthermore, curcumin-capped silver nanoparticles (AgNPs) exhibited solid antimicrobial action against the experimental bacterial isolates, except Proteus vulgaris (i.e., P. vulgaris). Curcumin-capped zinc oxide nanoparticles (ZnO NPs) found antimicrobial activity against all tested strains. Finally, the minimum inhibitory concentration exhibited values from 3.9 to 15.6 µg ml-1, which is too small compared to other traditional antibiotics. In addition, the green-synthesized Cur-Ag NPs and Cur-ZnO NPs showed good biocompatibility.

SELECTION OF CITATIONS
SEARCH DETAIL
...