Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 20184, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978236

ABSTRACT

Hexavalent chromium [Cr(VI)] is one of the most carcinogenic and mutagenic toxins, and is commonly released into the environemt from different industries, including leather tanning, pulp and paper manufacturing, and metal finishing. This study aimed to investigate the performance of dual chamber microbial fuel cells (DMFCs) equipped with a biocathode as alternative promising remediation approaches for the biological reduction of hexavalent chromium [Cr(VI)] with instantaneous power generation. A succession batch under preliminary diverse concentrations of Cr(VI) (from 5 to 60 mg L-1) was conducted to investigate the reduction mechanism of DMFCs. Compared to abiotic-cathode DMFC, biotic-cathode DMFC exhibited a much higher power density, Cr(VI) reduction, and coulombic efficiency over a wide range of Cr(VI) concentrations (i.e., 5-60 mg L-1). Furthermore, the X-ray photoelectron spectroscopy (XPS) revealed that the chemical functional groups on the surface of biotic cathode DMFC were mainly trivalent chromium (Cr(III)). Additionally, high throughput sequencing showed that the predominant anodic bacterial phyla were Firmicutes, Proteobacteria, and Deinococcota with the dominance of Clostridiumsensu strict 1, Enterobacter, Pseudomonas, Clostridiumsensu strict 11 and Lysinibacillus in the cathodic microbial community. Collectively, our results showed that the Cr(VI) removal occurred through two different mechanisms: biosorption and bioelectrochemical reduction. These findings confirmed that the DMFC could be used as a bioremediation approach for the removal of Cr(VI) commonly found in different industrial wastewater, such as tannery effluents. with simultaneous bioenergy production.


Subject(s)
Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Chromium/chemistry , Bacteria/genetics , Wastewater
2.
RSC Adv ; 13(23): 15856-15871, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37250226

ABSTRACT

Exploration of economical, highly efficient, and environment friendly non-noble-metal-based electrocatalysts is necessary for hydrogen and oxygen evolution reactions (HER and OER) but challenging for cost-effective water splitting. Herein, metal selenium nanoparticles (M = Ni, Co & Fe) are anchored on the surface of reduced graphene oxide and a silica template (rGO-ST) through a simple one-pot solvothermal method. The resulting electrocatalyst composite can enhance mass/charge transfer and promote interaction between water molecules and electrocatalyst reactive sites. NiSe2/rGO-ST shows a remarkable overpotential (52.5 mV) at 10 mA cm-2 for the HER compared to the benchmark Pt/C E-TEK (29 mV), while the overpotential values of CoSeO3/rGO-ST and FeSe2/rGO-ST are 246 and 347 mV, respectively. The FeSe2/rGO-ST/NF shows a low overpotential (297 mV) at 50 mA cm-2 for the OER compared to RuO2/NF (325 mV), while the overpotentials of CoSeO3-rGO-ST/NF and NiSe2-rGO-ST/NF are 400 and 475 mV, respectively. Furthermore, all catalysts indicate negligible deterioration, indicating better stability during the process of HER and OER after a stability test of 60 h. The water splitting system composed of NiSe2-rGO-ST/NF||FeSe2-rGO-ST/NF electrodes requires only ∼1.75 V at 10 mA cm-2. Its performance is nearly close to that of a noble metal-based Pt/C/NF||RuO2/NF water splitting system.

3.
RSC Adv ; 12(4): 2207-2218, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425267

ABSTRACT

Oxygen reduction reaction (ORR) remains a pivotal factor in assessing the overall efficiency of energy conversion and storage technologies. A promising family of ORR electrocatalysts is mixed transition-metal oxides (MTMOs), which have recently gained a growing research interest. In this study, we developed MTMOs with different compositions (designated as A x B3-x O4; A = Cu, B = Co or Mn) anchored on two different carbon supports (activated carbon Vulcan XC-72 (AC) and graphene (G)) for catalyzing ORR in neutral media. Four different MTMO electrocatalysts (i.e., MnO2-CuO/AC, CoO-CuO/AC, CoO-CuO/G, and MnO2-CuO/G) were synthesized by a simple and scalable co-precipitation method. We documented the morphology and electrocatalytic properties of MTMO electrocatalysts using transmission and scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS), energy dispersive X-ray (EDX), and electrochemical techniques. Generally, MTMOs exhibited remarkably high ORR electrocatalytic activity with MTMOs anchored on an activated carbon support outperforming their respective MTMOs anchored on a graphene support, highlighting the importance of the catalyst support in determining the overall ORR activity of electrocatalysts. MnO2-CuO/AC has the highest diffusion limiting current density (j) value of 4.2 mA cm-2 at -600 mV (vs. SHE), which is ∼1.1-1.7-fold higher than other tested electrocatalysts (i.e., 3.9, 3.5, and 2.7 mA cm-2 for CoO-CuO/AC, CoO-CuO/G, and MnO2-CuO/G, respectively), and slightly lower than Pt/C (5.1 mA cm-2) at the same potential value. Moreover, all electrocatalysts exhibited good linearity and parallelism of the Koutechy-Levich (K-L) plots, suggesting that ORR followed first-order reaction kinetics with the number of electrons involved being close to four. Benefiting from their remarkable ORR electrochemical activities and low cost, our results reveal that non-precious MTMOs are efficient enough to replace expensive Pt for broad applications in energy conversion and electrocatalysis in neutral media, such as microbial fuel cells.

4.
Adv Sci (Weinh) ; 9(6): e2104522, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35018738

ABSTRACT

Engineering of structure and composition is essential but still challenging for electrocatalytic activity modulation. Herein, hybrid nanostructured arrays (HNA) with branched and aligned structures constructed by cobalt selenide (CoSe2 ) nanotube arrays vertically oriented on carbon cloth with CoNi layered double hydroxide (CoSe2 @CoNi LDH HNA) are synthesized by a hydrothermal-selenization-hybridization strategy. The branched and hollow structure, as well as the heterointerface between CoSe2 and CoNi LDH guarantee structural stability and sufficient exposure of the surface active sites. More importantly, the strong interaction at the interface can effectively modulate the electronic structure of hybrids through the charge transfer and then improves the reaction kinetics. The resulting branched CoSe2 @CoNi LDH HNA as trifunctional catalyst exhibits enhanced electrocatalytic performance toward oxygen evolution/reduction and hydrogen evolution reaction. Consequently, the branched CoSe2 @CoNi LDH HNA exhibits low overpotential of 1.58 V at 10 mA cm-2 for water splitting and superior cycling stability (70 h) for rechargeable flexible Zn-air battery. Theoretical calculations reveal that the construction of heterostructure can effectively lower the reaction barrier as well as improve electrical conductivity, consequently favoring the enhanced electrochemical performance. This work concerning engineering heterostructure and topography-performance relationship can provide new guidance for the development of multifunctional electrocatalysts.

5.
J Genet Eng Biotechnol ; 20(1): 12, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35072828

ABSTRACT

BACKGROUND: Although microbial fuel cells (MFCs) represent a promising technology for capturing renewable energy from wastewater, their scaling-up is significantly limited by a slow-rate cathodic oxygen reduction reaction (ORR) and the development of a resilient anodic microbial community. In this study, mixed transition metal oxides of nickel and copper (Ni and Cu), supported on a graphene (G) (NiO-CuO/G) electrocatalyst, were synthesized and tested as a cost-effective cathode for ORR in MFCs. Electrochemical measurements of electrocatalyst were conducted using a rotating disk electrode (RDE) and linear sweep voltammetry (LSV) in a neutral electrolyte, and compared with a benchmark Pt/C catalyst. Furthermore, the long-term performance of the as-synthesized electrocatalyst was evaluated in a single-chamber MFC by measuring organic matter removal and polarization behavior. The successful enrichment of electroactive biofilm was also monitored using transmission electron microscopy and the Vitek2 compact system technique. RESULTS: When compared with the benchmark platinum cathode, the NiO-CuO/G electrocatalyst exhibited high selectivity toward ORR. The rotating disk electrode (RDE) experiments reveal that ORR proceeds via a 4-electron ORR mechanism. Furthermore, the NiO-CuO/G electrocatalyst also exhibited a high power density of 21.25 mW m-2 in an air-cathode MFC, which was slightly lower than that of Pt/C-based MFC (i.e., 50.4 mW m-2). Biochemical characterization of the most abundant bacteria on anodic biofilms identified four genera (i.e., Escherichia coli, Shewanella putrefaciens, Bacillus cereus, and Bacillus Thuringiensis/mycoides) that belonged to Gammaproteobacteria, and Firmicutesphyla. CONCLUSIONS: This study demonstrates that the NiO-CuO/G cathode had an enhanced electrocatalytic activity toward ORR in a pH-neutral solution. This novel mixed transition metal oxide electrocatalyst could replace expensive Pt-based catalysts for MFC applications.

6.
Bioprocess Biosyst Eng ; 44(12): 2627-2643, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34498106

ABSTRACT

Microbial fuel cell (MFC) is used to remove organic pollutants while generating electricity. Biocathode plays as an efficient electrocatalyst for accelerating the Oxidation Reduction Reaction (ORR) of oxygen in MFC. This study integrated biocathode into a single-chamber microbial fuel cell (BSCMFC) to produce electricity from an organic substrate using aerobic activated sludge to gain more insights into anodic and cathodic biofilms. The maximum power density, current density, chemical oxygen demand (COD) removal, and coulombic efficiency were 0.593 W m-3, 2.6 A m-3, 83 ± 8.4%, and 22 ± 2.5%, respectively. Extracellular polymeric substances (EPS) produced by biofilm from the biocathode were higher than the bioanode. Infrared spectroscopy and Scanning Electron Microscope (SEM) examined confirmed the presence of biofilm by the adhesion on electrodes. The dominant phyla in bioanode were Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, while the dominant phylum in the biocathode was Proteobacteria. Therefore, this study demonstrates the applicable use of BSCMFC for bioelectricity generation and pollution control.


Subject(s)
Bioelectric Energy Sources , Biofilms , Electricity , Electrodes , Sewage , Biological Oxygen Demand Analysis
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 211: 100-107, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30529811

ABSTRACT

La 0.8 Sr0.2MnO3 (LSM) polycrystalline powder was synthesized using hydrothermal method at 900 °C. High Resolution Transmission Electron Microscope (HR-TEM) showed that the particles were uniform with average particle size of 657 nm. X-ray Diffraction (XRD) and lattice fringes indicated rhombohedral structure of LSM particles. Thin LSM films were successfully grown on cleaned Si (100) substrate by pulsed laser deposition (PLD). Annealing of LSM films in air affected structure, morphology and electrical properties that films where crystallization of the LSM films was started at 600 °C and enhanced by further annealing as indicated by XRD. Field Emission Scanning Electron Microscope (FESEM) revealed that the grain size increases by increasing annealing temperature and at temperature of 1000 °C cracks were seen. Average roughness and root mean square roughness decreased with further annealing (up to 800 °C) then increased at 1000 °C that were verified by atomic force microscope (AFM). Moreover, Raman scattering was enhanced and all major bands were revealed at 800 °C. Resistivity of LSM films decreases with increasing temperature (from 25 °C to 200 °C) and all films underwent a semiconductor behavior in the most of applied temperatures. The lowest resistivity of LSM films was reached at annealing temperature of 800 °C with low activation energy value (Ea) of about 0.1 eV.

8.
J Adv Res ; 9: 43-50, 2018 Jan.
Article in English | MEDLINE | ID: mdl-30046485

ABSTRACT

Distillate of upgraded palm biodiesel was blended in different volume percentages (5, 10, 15, and 20%) with jet A-1. The mixture can be used as a replacement for petroleum Jet fuel. Physical properties of blends were measured and compared with those of jet A-1. Empirical equations were developed to predict the properties of blended fuel, including density, kinematic viscosity, freezing point, H/C ratio, and acid value. The statistical analysis indicated that the proposed equations predictions agree well with the experimental data. The predicted model shows an (R2) between 0.99-0.98, indicating good fitting between the experimental data and proposed model. The distillate of upgraded palm biodiesel was miscible with the kerosene jet A-1 in all volume fractions under study 5-20%. The economic analysis shows that the production cost per unit of the produced bio jet fuel was much higher than the selling price of the petroleum jet fuel. This price difference is due to the raw materials cost; as the palm oil used is nearly three times that of crude oil. The economic evaluation study reveals that the operating cost of prepared bio jet equals to 2360 $/ton, which is a promising result.

9.
Appl Biochem Biotechnol ; 184(1): 92-101, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28624996

ABSTRACT

Due to the potential interest, bioelectrochemical responses of activated sludge using the three-electrode system are tested. From the cyclic voltammograms, the oxidation current output is increasing due to incubation time increase, whereas 5, 25 and 39.33 µA are obtained after 3, 72 and 96 h, respectively. Changing the working electrode from glassy carbon to carbon paste led to the increase in the electrochemical signal from 0.3 to be 3.72 µA. On the other hand, the use of the lipophilic redox mediator (2,6-dichlorophenolindophenol (DCIP)) amplified the oxidation current to reach 19.9 µA instead of 2.1 µA. Based on these findings, the mixed microbial community of the activated sludge is exploited as a catalyst for the bio-oxidation of the degradable organic substrates, while DCIP is used as a mobile electron carrier from the intracellular matrix of the metabolically active cells to the carbon paste electrode which served as the final electron acceptor. Therefore, the extracellular electron transfer from the formed active biofilm at the electrode surface is assisted by the existence of DCIP.


Subject(s)
Electrochemical Techniques/methods , Sewage , 2,6-Dichloroindophenol , Bioelectric Energy Sources , Electrons , Oxidation-Reduction
10.
J Genet Eng Biotechnol ; 16(2): 369-373, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30733748

ABSTRACT

Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6 cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6 cm microbial fuel cells is about 946 and 791 mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3 cm, the power density is decreased from 108.3 mW m-2 to 24.5 mW m-2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791 mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode.

11.
J Genet Eng Biotechnol ; 15(1): 127-137, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30647649

ABSTRACT

This study investigates the performance of acetate feed membrane less single chamber microbial fuel cell and physical characterization of the bio film present on the anode surface using Scanning Electron Microscope (SEM) and 16S rRNA analyzer. The performance has been investigated using Teflon treated carbon paper with 0.3 mg/cm2 Pt/C loaded as a cathode and carbon paper as an anode. The maximum open circuit potential is noticed as 791 mV, the system successfully revealed a maximum power density of 86.1 mW m-2 at stable current density of 354 mA m-2 with high coulombic efficiency of 65% at maximum degradation rate of 96%. SEM showed the dense adherence of microorganisms on the anode. 16S rRNA sequencing results indicates phylogenetic mixture in the communities of anodic biofilm and there is no single dominant bacterial species. The dominant phyla are Firmicutes, Gamma Proteobacteria, Alpha Proteobacteria, Actinobacteria, with ten dominant microbial strains: Bacillus firmus, Shewanella profunda, Bacillus isronensis, Brevundimonas bullata, Pseudomonas putida, Planococcus citreus, Micrococcus endophyticus, Acinetobacter tandoii, Bacillus safensis and Shewanella xiamenensis.

12.
Chemphyschem ; 17(7): 1054-61, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26748621

ABSTRACT

Pt-CeO2 /C, Pt-TiO2 /C, and Pt-ZrO2 /C electrocatalysts were prepared by using a modified microwave-assisted polyol process. Physical characterization was performed by using XRD, TEM, and EDX analyses. The incorporation of different metal oxides increased the dispersion degree of Pt nanoparticles and reduced their diameter to 2.50 and 2.33 nm when TiO2 and ZrO2 were introduced to Pt/C, respectively. The electrocatalytic activity of various electrocatalysts was examined towards methanol oxidation in H2 SO4 solution by using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Among the studied composites, Pt-ZrO2 /C was selected to be a candidate electrocatalyst for better electrochemical performance in direct methanol fuel cells.

13.
Appl Biochem Biotechnol ; 175(7): 3519-30, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25637512

ABSTRACT

In the microbial electrochemical system (MES), the microbial-electrode interactions are often regulated by the metabolic pathway and respiratory activities. To improve the efficiency of MES, there is a need to introduce a microbial community that provides a continuous oxidation of organic substrates with a sustainable current output. Thus, activated sludge was suggested and the rapid evaluation of its biodegradation activity, using cyclic voltammetry, was performed. Stimulation of the metabolic pathway led to the appearance of an oxidation peak current (22 µA/cm(2), at about 750 mV), whereas the electrochemical signals were originated only from the metabolically active microbes. Cell viability, cultivation time, type, and concentration of the degradable organic substrates have been identified as major regulators for the electrocatalytic performance. From two different microbial communities, the generated electrochemical signal of the aerobic activated sludge was more than twofold higher in converting the degradable organic substrates (glucose, acetate, and succinate at 10 g/L) into oxidation current. On the other hand, the secretion of electroactive metabolite(s) in the extracellular matrix was determined as a source of electrochemical signal. Moreover, the mechanism(s) of the microbe-electrode interactions were demonstrated. Therefore, the current bioelectrochemical system could be used as a platform for monitoring the rate of substrate degradation as well as measuring the metabolic pathway activity.


Subject(s)
Biodegradation, Environmental , Electrochemical Techniques , Sewage/microbiology , Waste Disposal, Fluid/methods , Bioreactors , Cell Survival/physiology , Metabolic Networks and Pathways , Oxidation-Reduction , Succinic Acid/metabolism
14.
Phys Chem Chem Phys ; 16(22): 10414-8, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24760311

ABSTRACT

A multifunctional catalyst may represent a valid route to enhance methanol electro-oxidation. Ternary catalysts based on Pt modified with both Ru and Ir oxides show better performance for methanol electro-oxidation than bi-metallic Pt-Ru catalysts.

15.
Bioresour Technol ; 102(22): 10459-64, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21944282

ABSTRACT

This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.


Subject(s)
Aluminum Oxide/chemistry , Bioelectric Energy Sources , Cobalt/chemistry , Electricity , Electrochemical Techniques/methods , Magnesium Oxide/chemistry , Manganese/chemistry , Oxides/chemistry , Catalysis , Electrodes , Oxidation-Reduction , Oxygen/chemistry
16.
Biosens Bioelectron ; 26(8): 3542-8, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21353522

ABSTRACT

A novel and stable non-enzymatic glucose sensor was developed based on the chemical reduction of Cu(2)O nanoparticles on Carbon Vulcan XC-72 using NaBH(4) as the reducing agent via the impregnation method. Different molar ratios of NaBH(4) to the copper salt were employed during the reduction step. This was found to affect the morphology; composition and structure of the prepared samples as investigated by TEM, EDX and XRD analyses. Cyclic voltammetry and chronoamperometry were applied to examine the electrocatalytic activity of the different samples of Cu(2)O/Carbon Vulcan XC-72 towards glucose oxidation in alkaline medium. The 'x70' sample got the highest oxidation current density and the lowest oxidation potential. The performance of this sensor was evaluated showing a wide linear range up to 6mM with sensitivity of 629 µA cm(-2)mM(-1) and detection limit of 2.4 µM. Its good tolerance to ascorbic acid with long-term stability elects Cu(2)O/Carbon Vulcan XC-72 as a promising glucose sensor.


Subject(s)
Copper/chemistry , Electrochemical Techniques/methods , Electrodes , Glucose/analysis , Nanoparticles/chemistry , Biosensing Techniques/methods , Catalysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...