Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 53(53): 7310-7313, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28480910

ABSTRACT

Tip-enhanced Raman scattering (TERS) can be used to image plasmon-enhanced local electric field variations with extremely high spatial resolution under ambient conditions. This is illustrated through TERS images recorded using a silver atomic force microscope tip coated with strategically selected molecular reporters and used to image a sputtered silver film.

2.
Analyst ; 141(12): 3562-72, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27067797

ABSTRACT

Both photons and electrons may be used to excite surface plasmon polaritons, the collective charge density fluctuations at the surface of metal nanostructures. By virtue of their nanoscopic and dissipative nature, a detailed characterization of surface plasmon (SP) eigenmodes in real space-time ultimately requires joint nanometer spatial and femtosecond temporal resolution. The latter realization has driven significant developments in the past few years, aimed at interrogating both localized and propagating SP modes. In this mini-review, we briefly highlight different techniques employed by our own groups to visualize the enhanced electric fields associated with SPs. Specifically, we discuss recent hyperspectral optical microscopy, tip-enhanced Raman nano-spectroscopy, nonlinear photoemission electron microscopy, as well as correlated scanning transmission electron microscopy-electron energy loss spectroscopy measurements targeting prototypical plasmonic nanostructures and constructs. Through selected practical examples from our own laboratories, we examine the information content in multidimensional images recorded by taking advantage of each of the aforementioned techniques. In effect, we illustrate how SPs can be visualized at the ultimate limits of space and time.

3.
J Chem Phys ; 138(12): 124501, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23556730

ABSTRACT

Ultrafast deep-ultraviolet through near infrared (210-950 nm) transient absorption spectroscopy complemented by ab initio multiconfigurational calculations offers a global description of the photochemical reaction pathways of bromoform following 255-nm excitation in methylcyclohexane and acetonitrile solutions. Photoexcitation of CHBr3 leads to the ground-state iso-CHBr3 product in a large quantum yield (∼35%), formed through two different mechanisms: concerted excited-state isomerization and cage-induced isomerization through the recombination of the nascent radical pair. These two processes take place on different time scales of tens of femtoseconds and several picoseconds, respectively. The novel ultrafast direct isomerization pathway proposed herein is consistent with the occurrence of a conical intersection between the first excited singlet state of CHBr3 and the ground electronic state of iso-CHBr3. Complete active space self-consistent field calculations characterize this singularity in the vicinity of a second order saddle point on the ground state which connects the two isomer forms. For cage-induced isomerization, both the formation of the nascent radical pair and its subsequent collapse into ground-state iso-CHBr3 are directly monitored through the deep-ultraviolet absorption signatures of the radical species. In both mechanisms, the optically active (i.e., those with largest Franck-Condon factors) C-Br-Br bending and Br-Br stretching modes of ground-state iso-CHBr3 have the largest projection on the reaction coordinate, enabling us to trace the structural changes accompanying vibrational relaxation of the non-equilibrated isomers through transient absorption dynamics. The iso-CHBr3 photoproduct is stable in methylcyclohexane, but undergoes either facile thermal isomerization to the parent CHBr3 structure through a cyclic transition state stabilized by the polar acetonitrile medium (∼300-ps lifetime), and hydrolysis in the presence of water.


Subject(s)
Quantum Theory , Ultraviolet Rays , Photochemical Processes , Spectroscopy, Near-Infrared , Trihalomethanes/chemistry
4.
Nanotechnology ; 24(9): 095707, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23403363

ABSTRACT

Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag(+) ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

5.
J Phys Chem A ; 114(36): 9919-26, 2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20568790

ABSTRACT

We report experimental and computational studies of the photolysis of atmospherically important 1,2-dibromoethanes (1,2-C(2)X(4)Br(2); X = H, F) in Ar matrixes at 5 K. Using the pulsed deposition method, we find that significant conformational relaxation occurs for 1,2-C(2)H(4)Br(2) (EDB; observed anti/gauche ratio =30:1) but not for 1,2-C(2)F(4)Br(2) (TFEDB; anti/gauche = 3:1), which is traced to a larger barrier to rotation about the C-C bond in the latter. Laser photolysis of matrix-isolated EDB at 220 nm reveals the growth of infrared bands assigned to the gauche conformer and C(2)H(4)-Br(2) charge transfer complex (both as major products), and the C(2)H(4)Br radical and C(2)H(3)Br-HBr complex as minor (trace) products. The presence of the C(2)H(4)-Br(2) complex is confirmed in the UV/visible spectrum, which shows an intense charge transfer band at 237 nm that grows in intensity upon annealing. In contrast to previous reports, our experimental and computational results do not support a bridged structure for the C(2)H(4)Br radical in either the gas phase or matrix environments. We also report on the laser photolysis of matrix-isolated TFEDB at 220 nm. Here, the dominant photoproducts are the anti and gauche conformers of the C(2)F(4)Br radical, the vibrational and electronic spectra of which are characterized here for the first time. The increase in yield of radical for TFEDB vs EDB is consistent with the stronger C-Br bond in the fluoro-substituted radical species. The photochemistry of the C(2)F(4)Br radical following excitation at 266 nm was investigated and found to lead C-Br bond cleavage and formation of C(2)F(4). The implications of this work for the atmospheric and condensed phase photochemistry of the alkyl halides is emphasized.

6.
Phys Rev Lett ; 84(20): 4573-6, 2000 May 15.
Article in English | MEDLINE | ID: mdl-10990743

ABSTRACT

A Doppler broadening of x-ray transitions from pionic nitrogen and muonic oxygen, which is attributed to Coulomb explosion of the molecules, has been observed by using a crystal spectrometer. Large linewidths indicate fast ionization of the molecules and a charge of (3-4)e for the accelerated fragments.

SELECTION OF CITATIONS
SEARCH DETAIL
...