Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 187(2-3): 171-81, 2003 May 03.
Article in English | MEDLINE | ID: mdl-12699906

ABSTRACT

In the current study, we have investigated the bioeffects of repeated exposure to low-frequency (50 Hz) high-intensity (20 mT; 200 G) electromagnetic field (EMF) on some immune parameters in mice. The animals were exposed to EMF daily for 30 min three times per week for 2 weeks. We also studied the possible immunomodulatory effects of two anti-radical substances known to have non-specific immunostimulant effects namely, L-carnitine (200 mg/kg body weight i.p.) and Q10 (200 mg/kg body weight, p.o.). Both drugs were given 1 h prior to each EMF exposure. Immune endpoints included total body weight, spleen/body weight ratio, splenocytes viability, total and differential white blood cell (WBCs; lymphocytes, monocytes, neutrophils) counts, as well as the lymphocyte proliferation induced by the mitogens; phytohaemagglutinin (PHA), concanavalin-A (Con-A) and lipoploysaccharide (LPS). Magnetic field decreased splenocyte viability, WBCs count, as well as mitogens-induced lymphocyte proliferation. L-carnitine, but not Q10 could ameliorate the adverse effects of EMF on the vast majority of the immune parameters tested, suggesting a possible immunoprotective role of L-carnitine under the current experimental conditions.


Subject(s)
Antioxidants/therapeutic use , Carnitine/therapeutic use , Electromagnetic Fields/adverse effects , Radiation-Protective Agents/therapeutic use , Spleen/pathology , Ubiquinone/analogs & derivatives , Ubiquinone/therapeutic use , Animals , Body Weight/radiation effects , Cell Survival/radiation effects , Coenzymes , Concanavalin A/pharmacology , Lipopolysaccharides/pharmacology , Lymphocytes/drug effects , Male , Mice , Mitogens/pharmacology , Monocytes/pathology , Monocytes/radiation effects , Neutrophils , Phytohemagglutinins/pharmacology , Spleen/radiation effects , Stimulation, Chemical , Time Factors
2.
Pharmacol Res ; 46(3): 287-93, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12220973

ABSTRACT

Dibromoacetonitrile (DBAN) is a disinfection by-product following chlorination of drinking water. Epidemiological studies indicate that it might present a potential hazard to human health. DBAN was previously found to induce oxidative stress in rat stomach as manifested by perturbation of some enzymatic and nonenzymatic antioxidant parameters. Therefore, we have investigated the oxidative stress possibly induced by DBAN in mouse stomach and possible protection by melatonin (MLT) as a free radical scavenger. In a dose-response study, mice were administered a single oral dose of DBAN (30, 60 and 120 mg kg(-1)) and were sacrificed after 1 h. DBAN significantly reduced glutathione (GSH) content that was somehow dose-related, and inhibited glutathione-S-transferase (GST) activity in gastric tissues. The highest dose of DBAN (120 mg kg(-1)) lowered GSH by 74% and induced a significant elevation of lipid peroxidation products, determined as thiobarbituric acid reactive substances (TBARS) by 69%. The same dose inhibited the gastric activities of GST, superoxide dismutase (SOD) and catalase (CAT) by 70, 57 and 23%, respectively. In a time-course study, mice were administered DBAN (60 mg kg(-1) p.o.) and sacrificed 0.5, 1, 3, 6, 12 and 24 h after treatment. GSH was dramatically depleted at 0.5, 1, 3 and 6 h (45, 38, 39 and 49% of control, respectively) and remained significantly low at 12 and 24 h. Also, DBAN caused an accumulation of TBARS in gastric tissues starting from 3 h and was maximum at 6 h (133% of the control). The enzymatic activities of GST and SOD were maximally inhibited by DBAN treatment at 0.5 h (32% for GST and 37% for SOD of the respective control). The activities of both enzymes returned to control values at 24 h. CAT activity was not affected by DBAN administration at all. Pretreatment of another group of mice with melatonin (10 mg kg(-1) per day p.o. 12 days) before administration of DBAN (60 mg kg(-1) p.o.) completely mitigated the aforementioned parameters. In conclusion, the present study indicates that DBAN induces a marked oxidative stress in mouse stomach as evidenced by GSH depletion, TBARS accumulation and GST, SOD and CAT inhibition. Melatonin could mitigate DBAN-induced oxidative stress in mouse stomach as it did almost normalize both the enzymatic and nonenzymatic antioxidant parameters.


Subject(s)
Acetonitriles/administration & dosage , Antioxidants/pharmacology , Melatonin/pharmacology , Oxidative Stress/drug effects , Stomach/drug effects , Acetonitriles/toxicity , Administration, Oral , Animals , Catalase/drug effects , Catalase/metabolism , Gastric Mucosa/metabolism , Glutathione/drug effects , Glutathione/metabolism , Glutathione Transferase/drug effects , Glutathione Transferase/metabolism , Male , Mice , Superoxide Dismutase/drug effects , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...