Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Water Sci Technol ; 89(6): 1419-1440, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38557709

ABSTRACT

Rivers respond directly to climate change, as well as incorporating the effects of climate-driven changes occurring within their watersheds. In this research, climate change's impact on the Atbara River, one of the main tributaries of the Nile River, was studied. Various statistical methods of analysis were applied to study the basic characteristics of the climatic parameters that affect the discharge of the Atbara River. The three hydrological gauging stations on the Atbara River, namely, the Upper Atbara and Setit reservoirs, Khashm el-Girba reservoir, and Atbara Kilo 3 station, were included in the study. The correlation between the meteorological parameters and the hydrology of the Atbara River and the prediction of the future hydrology of the Atbara River Basin was determined. Many hydrological models were developed and tested to predict the hydrology of the river. Finally, forecasting for river hydrology was built. No significant trend was found in the precipitation in the study area. The developed model simulates the observed data with a high coefficient of determination ranging from 0.7 to 0.91 for the three hydrological gauging stations studied. Results predicted a slight decrease in river discharge in future years.


Subject(s)
Rivers , Water Resources , Climate Change , Hydrology
2.
Sci Rep ; 13(1): 4812, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36959277

ABSTRACT

2-Mercaptobenzothiazole (2-MBT) in a solution of 0.5 M HCl is an effective corrosion inhibitor for aluminum and aluminum-titanium alloys. Tafel polarization and electrochemical impedance spectroscopy (EIS) were employed to assess this heterocyclic compound's anticorrosive potential and complementary by scanning electron microscope (SEM) and calculating porosity percentage in the absence and presence of various inhibitor concentrations. Inhibition efficiency (IE%) was strongly related to concentration (10-6-10-3 M). Temperature's effect on corrosion behavior was investigated. The data exhibited that the IE% decreases as the temperature increases. An increase in activation energy (Ea) with increasing the inhibitor concentration and the decrease in the IE% value of the mentioned compound with raising the temperature indicates that the inhibitor molecules are adsorbed physically on the surface. Thermodynamic activation parameters for Al and Al-Ti alloy dissolution in both 0.5 M HCl and the inhibited solution were calculated and discussed. According to Langmuir's adsorption isotherm, the inhibitor molecules were adsorbed. The evaluated standard values of the enthalpy ([Formula: see text], entropy ([Formula: see text] and free energy changes ([Formula: see text] showed that [Formula: see text] and [Formula: see text] are negative, while [Formula: see text] was positive. The formation of a protective layer adsorbed on the surfaces of the substrates was confirmed with the surface analysis (SEM). The porosity percentage is significantly reduced in the inhibitor presence and gradually decreased with increasing concentration. Furthermore, the density functional theory (DFT) and Monte Carlo (MC) simulations were employed to explain the variance in protecting the Al surface from corrosion. Interestingly, the theoretical findings align with their experimental counterparts. The planarity of 2-MBT and the presence of heteroatoms are the playmakers in the adsorption process.

3.
Int Dent J ; 73(4): 524-532, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36543730

ABSTRACT

PURPOSE: This study was designed to investigate the effect of intramarrow penetration (IMP) and 1% melatonin (MLN) gel on the remodelling process of autogenous bone graft (ABG) in an induced 1-osseous wall defect model. METHODS: Sixty-four intrabony induced mandibular defects were created on the distal side of premolars-P1, P2, P3, and P4 (on each side)-in 8 beagle dogs. A ligature-induced periodontitis was initiated in each defect. Defects were then divided into 4 equal groups. Group I was treated with open-flap debridement (OFD) alone, group II was treated with OFD/ABG, group III was treated with OFD/IMP/ABG, and group IV was treated with OFD/ABG/IMP/1% MLN gel. The study parameters were bone fill, histologic analysis, and immunohistochemical evaluation of endothelial nitric oxide synthase (eNOS) expression at 2-week (2W) and 8-week (8W) time intervals. RESULTS: At 8W, significant differences were revealed amongst all groups regarding the amount of bone fill and eNOS expressions (P < .001). Bone fill percentages were 55.5%, 22.3%, 16.8%, and 0% in groups IV, III, II, and I, respectively. eNOS expressions were 1.68 ± 0.06, 8.43 ± 0.04, 16.80 ± 0.17, and 1.97 ± 0.07 in groups IV, III, II, and I, respectively. The favourable results were in line with group IV. CONCLUSIONS: According to these preliminary results, defects treated by ABG augmented with IMP and 1% MLN gel revealed a greater amount of bone fill and reduced eNOS expression. This combination is therefore highly suggested as an adjunct to ABG.


Subject(s)
Alveolar Bone Loss , Melatonin , Dogs , Humans , Animals , Alveolar Bone Loss/surgery , Melatonin/pharmacology , Melatonin/therapeutic use , Guided Tissue Regeneration, Periodontal , Treatment Outcome
4.
Am J Physiol Heart Circ Physiol ; 322(4): H549-H567, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35089811

ABSTRACT

We recently reported a mouse model of chronic electronic cigarette (e-cig) exposure-induced cardiovascular pathology, where long-term exposure to e-cig vape (ECV) induces cardiac abnormalities, impairment of endothelial function, and systemic hypertension. Here, we delineate the underlying mechanisms of ECV-induced vascular endothelial dysfunction (VED), a central trigger of cardiovascular disease. C57/BL6 male mice were exposed to ECV generated from e-cig liquid containing 0, 6, or 24 mg/mL nicotine for 16 and 60 wk. Time-dependent elevation in blood pressure and systemic vascular resistance were observed, along with an impairment of acetylcholine-induced aortic relaxation in ECV-exposed mice, compared with air-exposed control. Decreased intravascular nitric oxide (NO) levels and increased superoxide generation with elevated 3-nitrotyrosine levels in the aorta of ECV-exposed mice were observed, indicating that ECV-induced superoxide reacts with NO to generate cytotoxic peroxynitrite. Exposure increased NADPH oxidase expression, supporting its role in ECV-induced superoxide generation. Downregulation of endothelial nitric oxide synthase (eNOS) expression and Akt-dependent eNOS phosphorylation occurred in the aorta of ECV-exposed mice, indicating that exposure inhibited de novo NO synthesis. Following ECV exposure, the critical NOS cofactor tetrahydrobiopterin was decreased, with a concomitant loss of its salvage enzyme, dihydrofolate reductase. NADPH oxidase and NOS inhibitors abrogated ECV-induced superoxide generation in the aorta of ECV-exposed mice. Together, our data demonstrate that ECV exposure activates NADPH oxidase and uncouples eNOS, causing a vicious cycle of superoxide generation and vascular oxidant stress that triggers VED and hypertension with predisposition to other cardiovascular disease.NEW & NOTEWORTHY Underlying mechanisms of e-cig-induced vascular endothelial dysfunction are delineated. e-cig exposure activates and increases expression of NADPH oxidase and disrupts activation and coupling of eNOS, leading to a vicious cycle of superoxide generation and peroxynitrite formation, with tetrahydrobiopterin depletion, causing loss of NO that triggers vascular endothelial dysfunction. This process is progressive, increasing with the duration of e-cig exposure, and is more severe in the presence of nicotine, but observed even with nicotine-free vaping.


Subject(s)
Cardiovascular Diseases , Electronic Nicotine Delivery Systems , Hypertension , Animals , Endothelium, Vascular/metabolism , Female , Male , Mice , NADPH Oxidases/metabolism , Nicotine , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Peroxynitrous Acid/metabolism , Superoxides/metabolism
5.
Nitric Oxide ; 119: 9-18, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34875385

ABSTRACT

Cytoglobin (Cygb) has been identified as the major nitric oxide (NO) metabolizing protein in vascular smooth muscle cells (VSMCs) and is crucial for the regulation of vascular tone. In the presence of its requisite cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism through the oxygen-dependent process of NO dioxygenation. Tobacco cigarette smoking (TCS) induces vascular dysfunction; however, the role of Cygb in the pathophysiology of TCS-induced cardiovascular disease has not been previously investigated. While TCS impairs NO biosynthesis, its effect on NO metabolism remains unclear. Therefore, we performed studies in aortic VSMCs with tobacco smoke extract (TSE) exposure to investigate the effects of cigarette smoke constituents on the rates of NO decay, with focus on the alterations that occur in the process of Cygb-mediated NO metabolism. TSE greatly enhanced the rates of NO metabolism by VSMCs. An initial increase in superoxide-mediated NO degradation was seen at 4 h of exposure. This was followed by much larger progressive increases at 24 and 48 h, accompanied by parallel increases in the expression of Cygb and B5/B5R. siRNA-mediated Cygb knockdown greatly decreased these TSE-induced elevations in NO decay rates. Therefore, upregulation of the levels of Cygb and its reducing system accounted for the large increase in NO metabolism rate seen after 24 h of TSE exposure. Thus, increased Cygb-mediated NO degradation would contribute to TCS-induced vascular dysfunction and partial inhibition of Cygb expression or its NO dioxygenase function could be a promising therapeutic target to prevent secondary cardiovascular disease.


Subject(s)
Cytoglobin/metabolism , Myocytes, Smooth Muscle/metabolism , Nitric Oxide/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Aorta/cytology , Cell Survival/drug effects , Cytochrome-B(5) Reductase/metabolism , Cytochromes b5/metabolism , Cytoglobin/genetics , Gene Knockdown Techniques , Mice , Muscle, Smooth, Vascular/cytology , Superoxides/metabolism , Up-Regulation/drug effects
7.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34930834

ABSTRACT

Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.


Subject(s)
Cytoglobin , Superoxide Dismutase , Animals , Cell Line , Cytoglobin/chemistry , Cytoglobin/genetics , Cytoglobin/metabolism , Electron Spin Resonance Spectroscopy , Male , Mice , Mice, Knockout , Reactive Oxygen Species/metabolism , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
8.
Am J Physiol Heart Circ Physiol ; 320(5): H2112-H2129, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33606584

ABSTRACT

Electronic cigarette (e-cig) vaping (ECV) has been proposed as a safer alternative to tobacco cigarette smoking (TCS); however, this remains controversial due to a lack of long-term comparative studies. Therefore, we developed a chronic mouse exposure model that mimics human vaping and allows comparison with TCS. Longitudinal studies were performed to evaluate alterations in cardiovascular function with TCS and ECV exposure durations of up to 60 wk. For ECV, e-cig liquid with box-mod were used and for TCS, 3R4F-cigarettes. C57/BL6 male mice were exposed 2 h/day, 5 days/wk to TCS, ECV, or air control. The role of vape nicotine levels was evaluated using e-cig-liquids with 0, 6, or 24 mg/mL nicotine. Following 16-wk exposure, increased constriction to phenylephrine and impaired endothelium-dependent and endothelium-independent vasodilation were observed in aortic segents, paralleling the onset of systemic hypertension, with elevations in systemic vascular resistance. Following 32 wk, TCS and ECV induced cardiac hypertrophy. All of these abnormalities further increased out to 60 wk of exposure, with elevated heart weight and aortic thickness along with increased superoxide production in vessels and cardiac tissues of both ECV and TCS mice. While ECV-induced abnormalities were seen in the absence of nicotine, these occurred earlier and were more severe with higher nicotine exposure. Thus, long-term vaping of e-cig can induce cardiovascular disease similar to TCS, and the severity of this toxicity increases with exposure duration and vape nicotine content.NEW & NOTEWORTHY A chronic mouse exposure model that mimics human e-cigarette vaping and allows comparison with tobacco cigarette smoking was developed and utilized to perform longitudinal studies of alterations in cardiovascular function. E-cigarette exposure led to the onset of cardiovascular disease similar to that with tobacco cigarette smoking. Impaired endothelium-dependent and endothelium-independent vasodilation with increased adrenergic vasoconstriction were observed, paralleling the onset of systemic hypertension and subsequent cardiac hypertrophy. This cardiovascular toxicity was dependent on exposure duration and nicotine dose.


Subject(s)
Aorta/drug effects , Cardiovascular Diseases/chemically induced , Nicotine/administration & dosage , Vaping/adverse effects , Adrenergic alpha-1 Receptor Agonists/pharmacology , Animals , Aorta/physiopathology , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiovascular Diseases/physiopathology , Electronic Nicotine Delivery Systems , Male , Mice , Phenylephrine/pharmacology , Time Factors , Vasodilation/drug effects , Vasodilation/physiology
9.
J Biol Chem ; 296: 100196, 2021.
Article in English | MEDLINE | ID: mdl-33334890

ABSTRACT

In smooth muscle, cytoglobin (Cygb) functions as a potent nitric oxide (NO) dioxygenase and regulates NO metabolism and vascular tone. Major questions remain regarding which cellular reducing systems regulate Cygb-mediated NO metabolism. To better define the Cygb-mediated NO dioxygenation process in vascular smooth muscle cells (SMCs), and the requisite reducing systems that regulate cellular NO decay, we assessed the intracellular concentrations of Cygb and its putative reducing systems and examined their roles in the process of NO decay. Cygb and the reducing systems, cytochrome b5 (B5)/cytochrome b5 reductase (B5R) and cytochrome P450 reductase (CPR) were measured in aortic SMCs. Intracellular Cygb concentration was estimated as 3.5 µM, while B5R, B5, and CPR were 0.88, 0.38, and 0.15 µM, respectively. NO decay in SMCs was measured following bolus addition of NO to air-equilibrated cells. siRNA-mediated knockdown experiments indicated that âˆ¼78% of NO metabolism in SMCs is Cygb-dependent. Of this, ∼87% was B5R- and B5-dependent. CPR knockdown resulted in a small decrease in the NO dioxygenation rate (VNO), while depletion of ascorbate had no effect. Kinetic analysis of VNO for the B5/B5R/Cygb system with variation of B5 or B5R concentrations from their SMC levels showed that VNO exhibits apparent Michaelis-Menten behavior for B5 and B5R. In contrast, linear variation was seen with change in Cygb concentration. Overall, B5/B5R was demonstrated to be the major reducing system supporting Cygb-mediated NO metabolism in SMCs with changes in cellular B5/B5R levels modulating the process of NO decay.


Subject(s)
Cytochromes b5/metabolism , Cytoglobin/metabolism , Muscle, Smooth, Vascular/metabolism , Nitric Oxide/metabolism , Oxygenases/metabolism , Animals , Biochemical Phenomena , Cells, Cultured , Humans , Kinetics , Mice
10.
Inhal Toxicol ; 32(13-14): 477-486, 2020.
Article in English | MEDLINE | ID: mdl-33256483

ABSTRACT

Objectives: To develop and test a new system for whole body exposure of small animals to support investigation of the biological effects of aerosol generated by electronic cigarette (e-cig) products under diverse inhalation conditions with improved control and monitoring of the e-cig vape exposure and nicotine delivered to the animal's systemic circulation. Methods: A computer-controlled design, with built-in sensors for real time monitoring of O2, CO2, relative humidity, and temperature within the exposure chambers and port for measuring total particulate matter (TPM) was developed, constructed and tested. This design accommodates a variety of commercial vaping devices, offers software flexibility to adjust exposure protocols to mimic different users' puffing patterns, enables variable nicotine delivery to the animal's systemic circulation; minimizes travel time and alterations of aerosol quality or quantity by delivering aerosol directly to the exposure chamber, offers local or remote operation of up to six distinct exposure chambers from a single control unit, and can simultaneously test different exposure conditions or products in diverse animal groups, which reduces inter-run variability, saves time, and increases productivity. Results: The time course pattern of TPM concentration during different phases of the exposure cycle was measured. With increased puffing duration or number of exposure cycles, higher TPM exposure and plasma cotinine levels were observed with plasma cotinine levels in the range reported in light or heavy smokers. Conclusion: Overall, this novel, versatile, and durable exposure system facilitates high-throughput evaluation of the relative safety and potential toxicity of a variety of e-cig devices and liquids.


Subject(s)
Electronic Nicotine Delivery Systems , Toxicity Tests/instrumentation , Administration, Inhalation , Animals , Carbon Dioxide/analysis , Carbon Monoxide/analysis , Cotinine/blood , Equipment Design , Humidity , Male , Mice, Inbred C57BL , Oxygen/analysis , Particulate Matter/analysis , Particulate Matter/toxicity , Temperature
11.
Free Radic Biol Med ; 160: 630-642, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32739595

ABSTRACT

While radiotherapy is a widely used treatment for many types of human cancer, problems of radio-resistance and side effects remain. Side effects induced by ionizing radiation (IR) arise primarily from its propensity to trigger inflammation and oxidative stress with damage of normal cells and tissues near the treatment area. The highly potent superoxide dismutase mimetic, GC4419 (Galera Therapeutics), rapidly enters cells and is highly effective in dismutating superoxide (O2•-). We performed studies to assess the potency of GC4419 in cancer killing and radio-sensitization in human lung cancer cells and normal immortalized lung cells. Treatment with GC4419 did not alter the radical generation during IR, primarily hydroxyl radical (.OH); however, it quenched the increased levels of O2•- detected in the cancer cells before and following IR. GC4419 triggered cancer cell death and inhibited cancer cell proliferation with no adverse effect on normal cells. Combination of GC4419 with IR augmented the cytotoxic effects of IR on cancer cells compared to monotherapy, while protecting normal cells from IR-induced cell death. DNA fragmentation and caspase-3 activity assays showed that combination of GC4419 with IR enhances cancer cell apoptosis. Moreover, GC4419 increased IR-induced Bax levels with decreased Bcl-2 and elevated Bax/Bcl-2 ratio following treatment. GC4419 increased TrxR activity in the normal cells but decreased activity in cancer cells, conferring increased cancer cell sensitivity to oxidative stress. In conclusion, GC4419 increases the cytotoxic and pro-apoptotic activity of IR in lung cancer cells while decreasing injury in normal cells.


Subject(s)
Neoplasms , Organometallic Compounds , Apoptosis , Cell Death , Humans , Radiation, Ionizing , Superoxide Dismutase
12.
Am J Physiol Heart Circ Physiol ; 319(1): H51-H65, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32412791

ABSTRACT

Although there is a strong association between cigarette smoking exposure (CSE) and vascular endothelial dysfunction (VED), the underlying mechanisms by which CSE triggers VED remain unclear. Therefore, studies were performed to define these mechanisms using a chronic mouse model of cigarette smoking (CS)-induced cardiovascular disease mirroring that in humans. C57BL/6 male mice were subjected to CSE for up to 48 wk. CSE impaired acetylcholine (ACh)-induced relaxation of aortic and mesenteric segments and triggered hypertension, with mean arterial blood pressure at 32 and 48 wk of exposure of 122 ± 6 and 135 ± 5 mmHg compared with 99 ± 4 and 102 ± 6 mmHg, respectively, in air-exposed mice. CSE led to monocyte activation with superoxide generation in blood exiting the pulmonary circulation. Macrophage infiltration with concomitant increase in NADPH oxidase subunits p22phox and gp91phox was seen in aortas of CS-exposed mice at 16 wk, with further increase out to 48 wk. Associated with this, increased superoxide production was detected that decreased with Nox inhibition. Tetrahydrobiopterin was progressively depleted in CS-exposed mice but not in air-exposed controls, resulting in endothelial nitric oxide synthase (eNOS) uncoupling and secondary superoxide generation. CSE led to a time-dependent decrease in eNOS and Akt expression and phosphorylation. Overall, CSE induces vascular monocyte infiltration with increased NADPH oxidase-mediated reactive oxygen species generation and depletes the eNOS cofactor tetrahydrobiopterin, uncoupling eNOS and triggering a vicious cycle of oxidative stress with VED and hypertension. Our study provides important insights toward understanding the process by which smoking contributes to the genesis of cardiovascular disease and identifies biomarkers predictive of disease.NEW & NOTEWORTHY In a chronic model of smoking-induced cardiovascular disease, we define underlying mechanisms of smoking-induced vascular endothelial dysfunction (VED). Smoking exposure triggered VED and hypertension and led to vascular macrophage infiltration with concomitant increase in superoxide and NADPH oxidase levels as early as 16 wk of exposure. This oxidative stress was accompanied by tetrahydrobiopterin depletion, resulting in endothelial nitric oxide synthase uncoupling with further superoxide generation triggering a vicious cycle of oxidative stress and VED.


Subject(s)
Endothelium, Vascular/metabolism , Leukocytes/metabolism , Oxidative Stress , Smoke Inhalation Injury/metabolism , Tobacco Smoke Pollution/adverse effects , Vasodilation , Animals , Aorta/metabolism , Aorta/physiopathology , Blood Pressure , Endothelium, Vascular/physiopathology , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice , Mice, Inbred C57BL , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type III/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Smoke Inhalation Injury/etiology , Smoke Inhalation Injury/physiopathology , Superoxides/metabolism
13.
Curr Opin Pharmacol ; 37: 112-117, 2017 12.
Article in English | MEDLINE | ID: mdl-29128854

ABSTRACT

Gastroesophageal reflux disease (GERD) constitutes a troublesome symptom complex resulting from retrograde passage of gastric contents into the esophagus or extra-esophageal regions. Premature-born, high-risk infants and those with neuro-aero-digestive pathologies are at increased risk. Critical review over the last 3 years was conducted, and current opinions on pharmacological targets include agents aimed at prevention of transient lower esophageal sphincter relaxation, modification of the physico-chemical composition of gastric contents, modification of gut motility, or altering sensory thresholds to ameliorate the troublesome symptoms. As data from well-designed studies is limited in the infant population, information from adult studies has been cited where potential application may be helpful.


Subject(s)
Gastroesophageal Reflux/drug therapy , Alginates/therapeutic use , Histamine H2 Antagonists/therapeutic use , Humans , Infant , Proton Pump Inhibitors/therapeutic use
14.
Front Pediatr ; 5: 73, 2017.
Article in English | MEDLINE | ID: mdl-28443270

ABSTRACT

INTRODUCTION: The usefulness of qualitative or quantitative volumetric magnetic resonance imaging (MRI) in early detection of brain structural changes and prediction of adverse outcomes in neonatal illnesses warrants further investigation. Our aim was to correlate certain brain injuries and the brain volume of feeding-related cortical and subcortical regions with feeding method at discharge among preterm dysphagic infants. MATERIALS AND METHODS: Using a retrospective observational study design, we examined MRI data among 43 (22 male; born at 31.5 ± 0.8 week gestation) infants who went home on oral feeding or gastrostomy feeding (G-tube). MRI scans were segmented, and volumes of brainstem, cerebellum, cerebrum, basal ganglia, thalamus, and vermis were quantified, and correlations were made with discharge feeding outcomes. Chi-squared tests were used to evaluate MRI findings vs. feeding outcomes. ANCOVA was performed on the regression model to measure the association of maturity and brain volume between groups. RESULTS: Out of 43 infants, 44% were oral-fed and 56% were G-tube fed at hospital discharge (but not at time of the study). There was no relationship between qualitative brain lesions and feeding outcomes. Volumetric analysis revealed that cerebellum was greater (p < 0.05) in G-tube fed infants, whereas cerebrum volume was greater (p < 0.05) in oral-fed infants. Other brain regions did not show volumetric differences between groups. CONCLUSION: This study concludes that neither qualitative nor quantitative volumetric MRI findings correlate with feeding outcomes. Understanding the complexity of swallowing and feeding difficulties in infants warrants a comprehensive and in-depth functional neurological assessment.

15.
Nat Commun ; 8: 14807, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28393874

ABSTRACT

The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease.


Subject(s)
Blood Pressure/physiology , Cytoglobin/physiology , Muscle Tonus/physiology , Muscle, Smooth, Vascular/physiology , Nitric Oxide/metabolism , Tunica Intima/physiology , Animals , Cardiovascular Diseases/prevention & control , Cells, Cultured , Cyclic GMP/metabolism , Cytoglobin/genetics , Down-Regulation , Female , Gene Knockdown Techniques , Male , Mice , Mice, Knockout , Muscle, Smooth, Vascular/enzymology , Muscle, Smooth, Vascular/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxygenases/metabolism , Rats , Tunica Intima/enzymology , Tunica Intima/metabolism , Vascular Resistance/physiology , Vasodilation/physiology
16.
Proc Natl Acad Sci U S A ; 112(37): 11648-53, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26297248

ABSTRACT

In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Endothelium, Vascular/metabolism , Ischemia/pathology , NADP/metabolism , Animals , Biopterins/analogs & derivatives , Biopterins/chemistry , Coronary Artery Disease/pathology , Electron Spin Resonance Spectroscopy , Endothelium, Vascular/pathology , Heart/physiology , Hypoxia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/chemistry , Nitric Oxide Synthase Type III/metabolism , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury
18.
J Biol Chem ; 287(43): 36623-33, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-22896706

ABSTRACT

Cytoglobin (Cygb) is a recently discovered cytoplasmic heme-binding globin. Although multiple hemeproteins have been reported to function as nitrite reductases in mammalian cells, it is unknown whether Cygb can also reduce nitrite to nitric oxide (NO). The mechanism, magnitude, and quantitative importance of Cygb-mediated nitrite reduction in tissues have not been reported. To investigate this pathway and its quantitative importance, EPR spectroscopy, spectrophotometric measurements, and chemiluminescence NO analyzer studies were performed. Under anaerobic conditions, mixing nitrite with ferrous-Cygb triggered NO formation that was trapped and detected using EPR spin trapping. Spectrophotometric studies revealed that nitrite binding to ferrous-Cygb is followed by formation of ferric-Cygb and NO. The kinetics and magnitude of Cygb-mediated NO formation were characterized. It was observed that Cygb-mediated NO generation increased linearly with the increase of nitrite concentration under anaerobic conditions. This Cygb-mediated NO production greatly increased with acidosis and near-anoxia as occur in ischemic conditions. With the addition of nitrite, soluble guanylyl cyclase activation was significantly higher in normal smooth muscle cells compared with Cygb knocked down cells with Cygb accounting for ∼40% of the activation in control cells and ∼60% in cells subjected to hypoxia for 48 h. Overall, these studies show that Cygb-mediated nitrite reduction can play an important role in NO generation and soluble guanylyl cyclase activation under hypoxic conditions, with this process regulated by pH, oxygen tension, nitrite concentration, and the redox state of the cells.


Subject(s)
Globins/metabolism , Myocytes, Smooth Muscle/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Anaerobiosis , Cell Hypoxia/physiology , Cells, Cultured , Cytoglobin , Electron Spin Resonance Spectroscopy , Globins/chemistry , Globins/genetics , Guanylate Cyclase/chemistry , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Luminescent Measurements , Myocytes, Smooth Muscle/cytology , Nitric Oxide/chemistry , Nitrites/chemistry , Oxidation-Reduction , Oxygen/chemistry , Oxygen/metabolism
19.
J Magn Reson ; 216: 21-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22296801

ABSTRACT

In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz)/proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3-carbamoyl-proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease.


Subject(s)
Nicotiana/chemistry , Smoke/adverse effects , Animals , Atmosphere Exposure Chambers , Cyclic N-Oxides , Electromagnetic Fields , Electron Spin Resonance Spectroscopy , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Nitrogen Oxides/chemistry , Organ Specificity , Oxidation-Reduction , Oxidative Stress , Pyrrolidines , Spin Labels , Tissue Distribution
20.
Proteomics ; 11(10): 2051-62, 2011 May.
Article in English | MEDLINE | ID: mdl-21500341

ABSTRACT

Cigarette smoke exposure is known to induce obstructive lung disease and several cardiovascular disease states in humans and also in animal models. Smoking leads to oxidative stress and inflammation that are important in triggering pulmonary and cardiovascular disease. The objective of the current study was to quantify differences in expression levels of plasma proteins of cigarette smoke -exposed and control mice, at the time of disease onset, and identify these proteins for use as potential biomarkers of the onset of smoking-induced disease. We utilized 2-D DIGE/MS to characterize these proteomic changes. 2-D DIGE of plasma samples identified 11 differentially expressed proteins in cigarette smoke -exposed mice. From these 11 proteins, 9 were downregulated and 2 were upregulated. The proteins identified are involved in vascular function, coagulation, metabolism and immune function. Among these, the alterations in fibrinogen (2.2-fold decrease), α-1-antitrypsin (1.8-fold increase) and arginase (4.5-fold decrease) are of particular interest since these have been directly linked to cardiovascular and lung pathology. Differences in expression levels of these proteins were also confirmed by immunoblotting. Thus, we observe that chronic cigarette smoke exposure in mice leads to prominent changes in the protein expression profile of blood plasma and these changes in turn can potentially serve as markers predictive of the onset and progression of cardiovascular and pulmonary disease.


Subject(s)
Blood Proteins/analysis , Electrophoresis, Gel, Two-Dimensional/methods , Mass Spectrometry/methods , Proteome/chemistry , Tobacco Smoke Pollution , Animals , Biomarkers , Blood Proteins/metabolism , Blotting, Western , Carbocyanines , Case-Control Studies , Image Processing, Computer-Assisted , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Oxidative Stress , Proteome/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...