Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(48): 72929-72945, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35619002

ABSTRACT

This study is interested in the removal of Pb(II), Cd(II), Co(II), Zn(II), and Sr(II) onto polyacrylic acid acrylonitrile talc P(AA-AN)-talc nanocomposite. P(AA-AN)-talc was fabricated using γ-irradiation-initiated polymerization at 50 kGy. Different analytical tools were used to investigate the functional groups, morphology, particle size, and structure of this composite. The ability of P(AA-AN)-talc to capture (Pb2+, Cd2+, Co2+, Zn2+, and Sr2+) as multi-component aqueous solutions was performed by a batch method. Saturation capacity and the effect of (agitating time, pH, initial metal concentrations, and temperature) were investigated. The distribution coefficients at different pHs have order: Pb2+ > Cd2+ > Co2+ > Zn2+ > Sr2+. The saturation capacity decreases by increasing heating temperatures. Reaction kinetic obeys the pseudo-second-order model. Sorption isotherms are more relevant to a Langmuir isotherm, and the monolayer sorption capacity is closed to saturation capacity. Thermodynamic parameters (∆G˚, ∆H˚, and ∆S˚) were endothermic and spontaneous. P(AA-AN)-talc is used for loading and recovery of studied cations in the column system. The study confirms that P(AA-AN)-talc is a promised composite for the sorption of the studied ions from aqueous solutions and should be considered as potential material for decontaminating these ions.


Subject(s)
Acrylonitrile , Nanocomposites , Water Pollutants, Chemical , Acrylic Resins , Adsorption , Cadmium/analysis , Hydrogen-Ion Concentration , Ions , Kinetics , Lead , Solutions , Talc , Thermodynamics , Water/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...