Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Physiol Neurobiol ; 320: 104199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000708

ABSTRACT

PURPOSE: To investigate the correlation between volume of carbon dioxide elimination (V̇CO2) and end-tidal carbon dioxide (PETCO2) with cardiac output (CO) in a swine pediatric acute respiratory distress syndrome (ARDS) model. METHODS: Respiratory and hemodynamic variables were collected from twenty-six mechanically ventilated juvenile pigs under general anesthesia before and after inducing ARDS, using oleic acid infusion. RESULTS: Prior to ARDS induction, mean (SD) CO, V̇CO2, PETCO2, and dead space to tidal volume ratio (Vd/Vt) were 4.16 (1.10) L/min, 103.69 (18.06) ml/min, 40.72 (3.88) mmHg and 0.25 (0.09) respectively. Partial correlation coefficients between average CO, V̇CO2, and PETCO2 were 0.44 (95% confidence interval: 0.18-0.69) and 0.50 (0.18-0.74), respectively. After ARDS induction, mean CO, V̇CO2, PETCO2, and Vd/Vt were 3.33 (0.97) L/min, 113.71 (22.97) ml/min, 50.17 (9.73) mmHg and 0.40 (0.08). Partial correlations between CO and V̇CO2 was 0.01 (-0.31 to 0.37) and between CO and PETCO2 was 0.35 (-0.002 to 0.65). CONCLUSION: ARDS may limit the utility of volumetric capnography to monitor CO.


Subject(s)
Carbon Dioxide , Respiratory Distress Syndrome , Humans , Child , Animals , Swine , Tidal Volume , Cardiac Output , Capnography , Respiration, Artificial
2.
Life (Basel) ; 13(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37109544

ABSTRACT

The mitochondrial splice variant of the sulfonylurea receptor (SUR2A-55) is associated with protection from myocardial ischemia-reperfusion (IR) injury, increased mitochondrial ATP sensitive K+ channel activity (mitoKATP) and altered glucose metabolism. While mitoKATP channels composed of CCDC51 and ABCB8 exist, the mitochondrial K+ pore regulated by SUR2A-55 is unknown. We explored whether SUR2A-55 regulates ROMK to form an alternate mitoKATP. We assessed glucose uptake in mice overexpressing SUR2A-55 (TGSUR2A-55) compared with WT mice during IR injury. We then examined the expression level of ROMK and the effect of ROMK modulation on mitochondrial membrane potential (Δψm) in WT and TGSUR2A-55 mice. TGSUR2A-55 had increased glucose uptake compared to WT mice during IR injury. The expression of ROMK was similar in WT compared to TGSUR2A-55 mice. ROMK inhibition hyperpolarized resting cardiomyocyte Δψm from TGSUR2A-55 mice but not from WT mice. In addition, TGSUR2A-55 and ROMK inhibitor treated WT isolated cardiomyocytes had enhanced mitochondrial uncoupling. ROMK inhibition blocked diazoxide induced Δψm depolarization and prevented preservation of Δψm from FCCP perfusion in WT and to a lesser degree TGSUR2A-55 mice. In conclusion, cardio-protection from SUR2A-55 is associated with ROMK regulation, enhanced mitochondrial uncoupling and increased glucose uptake.

3.
Breast Cancer Res ; 21(1): 74, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31202267

ABSTRACT

BACKGROUND: SHC1 proteins (also called SHCA) exist in three functionally distinct isoforms (p46SHC, p52SHC, and p66SHC) that serve as intracellular adaptors for several key signaling pathways in breast cancer. Despite the broad evidence implicating SHC1 gene products as a central mediator of breast cancer, testing the isoform-specific roles of SHC1 proteins have been inaccessible due to the lack of isoform-specific inhibitors or gene knockout models. METHODS: Here, we addressed this issue by generating the first isoform-specific gene knockout models for p52SHC and p66SHC, using germline gene editing in the salt-sensitive rat strain. Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. Rats were dosed with 7,12-dimethylbenz(a)anthracene (DMBA) by oral gavage to induce mammary tumors, and progression of tumor development was followed for 15 weeks. At 15 weeks, tumors were excised and analyzed by RNA-seq to determine differences between tumors lacking p66SHC or p52SHC. RESULTS: Compared with the wild-type (WT) rats, we found that genetic ablation of the p52SHC isoform significantly attenuated mammary tumor formation, whereas the p66SHC knockout had no effect. These data, combined with p52SHC being the predominant isoform that is upregulated in human and rat tumors, provide the first evidence that p52SHC is the oncogenic isoform of Shc1 gene products in breast cancer. Compared with WT tumors, 893 differentially expressed (DE; FDR < 0.05) genes were detected in p52SHC KO tumors compared with only 18 DE genes in the p66SHC KO tumors, further highlighting that p52SHC is the relevant SHC1 isoform in breast cancer. Finally, gene network analysis revealed that p52SHC KO disrupted multiple key pathways that have been previously implicated in breast cancer initiation and progression, including ESR1 and mTORC2/RICTOR. CONCLUSION: Collectively, these data demonstrate the p52SHC isoform is the key driver of DMBA-induced breast cancer while the expression of p66SHC and p46SHC are not enough to compensate.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Animals , Breast Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Gene Knockout Techniques , Humans , Immunohistochemistry , Mammary Neoplasms, Animal , Protein Isoforms , Rats , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...