Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 10(12)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36548562

ABSTRACT

The oral intake of alcohol has become a widespread concern due to its high risk to body health. Therefore, our purpose in this study was to reveal the antioxidant efficacies of natural Commiphora myrrha on hepatotoxicity and oxidative stress induced by ethanol in adult male rats, especially because these were not adequately revealed by previous studies. We examined the impacts of C. myrrha in male Sprague Dawley rats orally treated with C. myrrha (500 mg/kg) alone or in combination with 40% ethanol (3 g/kg), daily for 30 days. The results showed that treatment with C. myrrha after the oral consumption of ethanol caused a reduction in serum liver function parameters (alanine transferases, aspartate transaminase, and total bilirubin), hepatic tumor markers (α-L-flucosidase and arginase), and hepatic lipid peroxidation indicator (thiobarbituric acid reactive substances), as well as a slight restoration (not significant) in the levels of superoxide dismutase, catalase, reduced glutathione; and total antioxidant capacity. In addition, it alleviated histopathological changes in the liver, as revealed by decreased areas of inflammatory infiltrate, milder necrosis, and noticeably reduced periportal fibrosis and hemorrhage. The therapeutic efficiency of C. myrrha could be due to its rich sesquiterpenoids content which possesses anti-inflammatory properties and ROS-scavenging activities. Our findings provide evidence that the attenuation of oxidative stress by C. myrrha enables hepatic tissue to suppress inflammatory and oxidative mechanisms, resulting in enhanced liver structure and function. Therefore, C. myrrha extract shows promise as a protective and therapeutic supplement against toxic agents.

2.
J Food Biochem ; 44(9): e13346, 2020 09.
Article in English | MEDLINE | ID: mdl-32602579

ABSTRACT

The study aimed to clarify the characteristics of black tea (BTE) and/or curcumin (CMN) against aflatoxin-B1 (AFB1). Forty eight adult male Sprague-Dawley rats were divided into eight groups. G1 was non-treated control. G2, G3, and G4 were olive oil, BTE, and CMN, respectively. G5 was olive oil-dissolved AFB1 (25 µg/kg b.w). G6, G7, and G8 were AFB1 along with BTE (2%), CMN (200 mg/kg b.w.), and BTE plus CMN, respectively. All treatments were orally given for consecutive 90 days. After treatment period, rats were sacrificed. Serobiochemical analysis and histopathology showed hepatorenal dysfunction in response to AFB1. Glutathione-antioxidants were significantly decreased versus increased lipid peroxides (p < .05-.001). AFB1 significantly increased the expression of the antitumor p53, but decreased that of antiapoptotic Bcl2 in liver or kidney tissue, either (p < .05). BTE or CMN ameliorated those changes induced by AFB1 in both liver and kidney with highly pronounced improvement when combined BTE/CMN was used. PRACTICAL APPLICATIONS: Black tea (BTE) and curcumin (CMN) were known for their antioxidant effects, and several studies reported their independent effects against different toxicities including aflatoxicosis. The current study clarifies the ameliorative characteristics of both agents; BTE and/or CMN, against the toxicity resulted from the chronic exposure to aflatoxin-B1 (AFB1) (25 µg/kg b.w. for consecutive 90 days). The dose of either agents, BTE or CMN, was 200 mg/kg b.w. along with AFB1. The pathologic changes, serobiochemical parameters, oxidative stress, histological changes, and the molecular disruption, induced by AFB1 in both liver and kidney were obviously and significantly ameliorated after BTE and/or CMN treatments in variable potencies where both agents showed the most effective antitoxic capacities.


Subject(s)
Chemical and Drug Induced Liver Injury , Curcumin , Aflatoxin B1/toxicity , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Curcumin/pharmacology , Male , Rats , Rats, Sprague-Dawley , Tea
3.
Clin Exp Pharmacol Physiol ; 47(9): 1611-1621, 2020 09.
Article in English | MEDLINE | ID: mdl-32415699

ABSTRACT

This study investigated the effect of ellagic acid (EA) on SKOV-3 cell growth and invasiveness and tested if the underlying mechanism involves modulating autophagy. Cells were treated with EA in the presence or absence of chloroquine (CQ), an autophagy inhibitor, compound C (CC), an AMPK inhibitor, or an insulin-like growth factor-1 (IGF-1), a PI3K/Akt activator. EA, at an IC50 of 36.6 µmol/L, inhibited cell proliferation, migration, and invasion and induced cell apoptosis in SKOV-3 cells. These events were prevented by CQ. Also, EA increased levels of Beclin-1, ATG-5, LC3I/II, Bax, cleaved caspase-3/8 and reduced those of p62 and Bcl-2 in these cancer cells. Mechanistically, EA decreased levels of p-S6K1 (Thr389 ) and 4EBP-1 (Thr37/46 ), two downstream targets of mTORC1, and p-Akt (Thr308 ) but increased levels of AMPK (Thr172 ) and p-raptor (Ser792 ), a natural inhibitor of mTORC1. CC or IGF-1 alone partially prevented the effect of EA on cell survival, cell invasions, and levels of LDH, Beclin-1, and cleaved caspase-3. In conclusion, EA can inhibit SKOV-3 growth, migration, and invasion by activating cytotoxic autophagy mediated by inhibition of mTORC1 and Akt and activation of AMPK.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Autophagy/drug effects , Ellagic Acid/pharmacology , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Enzyme Activation , Enzyme Activators/pharmacology , Female , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Neoplasm Invasiveness , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
4.
Toxicol Ind Health ; 31(12): 1269-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-23796760

ABSTRACT

Aflatoxin B1 (AFB1) is a toxic compound commonly found as a contaminant in human food. It is carcinogenic due its potential in inducing the oxidative stress and distortion of the most antioxidant enzymes. Since black tea possesses strong antioxidant activity, it protects cells and tissues against oxidative stress. Curcumin (CMN), a naturally occurring agent, has a combination of biological and pharmacological properties that include antioxidant activity. Therefore, the present study was carried out to investigate the possible role of separate and mixed supplementation of black tea extract and CMN in the hepatotoxicity induced by AFB1 in rats. A total of 48: adult male Sprague Dawley rats were randomly divided into eight groups with six rats in each group. Group 1 (normal control) includes rats that received no treatment. Groups 2, 3, and 4 (positive control) include rats that received olive oil, black tea extract, and CMN, respectively. Group 5 includes rats that received AFB1 at a dose of 750 µg/kg body weight (b.w.) dissolved in olive oil. Groups 6, 7, and 8 include rats that received AFB1 along with 2% black tea extract, CMN at a dose of 200 mg/kg b.w., and both black tea extract and CMN at the same previous doses, respectively. After 90 days, biochemical and histopathological examination was carried out for the blood samples and liver tissues. A significant decrease in the antioxidant enzymes and a significant increase in the lipid peroxidation and hydrogen peroxide in the rats treated with AFB1 were observed. Moreover, there were dramatic changes in the liver function biomarkers, lipid profile, and liver architecture. Supplementation of black tea extract or CMN showed an efficient role in repairing the distortion of the biochemical and histological changes induced by AFB1 in liver. This improvement was more pronounced when both CMN and black tea were used together.


Subject(s)
Aflatoxin B1/antagonists & inhibitors , Curcumin/therapeutic use , Dietary Supplements , Hepatic Insufficiency/prevention & control , Plant Extracts/therapeutic use , Tea , Aflatoxin B1/toxicity , Animals , Antioxidants/therapeutic use , Biomarkers/blood , Biomarkers/metabolism , Camellia sinensis/chemistry , Curcumin/chemistry , Food Handling , Hepatic Insufficiency/chemically induced , Hepatic Insufficiency/metabolism , Hepatic Insufficiency/pathology , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/physiopathology , Male , Oxidation-Reduction , Oxidative Stress/drug effects , Plant Extracts/agonists , Plant Leaves/chemistry , Random Allocation , Rats, Sprague-Dawley , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...