Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(22): 32664-32679, 2024 May.
Article in English | MEDLINE | ID: mdl-38658512

ABSTRACT

The adsorption property of the costless green cellulose acetate (CA) was boosted by the dual modifications: inner modification by incorporating carboxylated graphene oxide (COOH-GO) into the CA spheres and outer modification by the surface modification of the COOH-GO@CA spheres by iminodiacetic acid (IDA) for removing Pb(II). The adsorption experiments of the Pb(II) proceeded in a batch mode to evaluate the adsorption property of the COOH-GO@CA@IDA spheres. The maximal Pb(II) adsorption capacity attained 613.30 mg/g within 90 min at pH = 5. The removal of Pb(II) reached its equilibrium within 20 min, and the removal % was almost 100% after 30 min at the low Pb(II) concentration. The Pb(II) adsorption mechanism was proposed according to the kinetics and isotherms studies; in addition, the zeta potential (ZP) measurements and X-ray Photoelectron Spectroscopy (XPS) analysis defined the adsorption pathways. By comparing the XPS spectra of the authentic and used COOH-GO@CA@IDA, it was deduced that the contributed chemical adsorption pathways are Lewis acid-base, precipitation, and complexation. The zeta potential (ZP) measurements demonstrated the electrostatic interaction participation in adsorbing the cationic Pb(II) species onto the negatively charged spheres (ZP = 14.2 mV at pH = 5). The unique channel-like pores of the COOH-GO@CA@IDA spheres suggested the pore-filling mechanism of Pb(II). The promising adsorption results and the superb recyclability character of COOH-GO@CA@IDA enable it to extend of the bench scale to the industrial scale.


Subject(s)
Cellulose , Graphite , Imino Acids , Lead , Graphite/chemistry , Lead/chemistry , Adsorption , Cellulose/chemistry , Cellulose/analogs & derivatives , Imino Acids/chemistry , Porosity , Kinetics
2.
Environ Sci Pollut Res Int ; 30(49): 108247-108262, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37747604

ABSTRACT

Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Magnesium Oxide/chemistry , Adsorption , Water , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
4.
Sci Rep ; 11(1): 16598, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34400760

ABSTRACT

An efficient composite was constructed based on aminated chitosan (NH2Cs), attapulgite (ATP) clay and magnetic Fe3O4 for adsorptive removal of Cr(VI) ions. The as-fabricated ATP@Fe3O4-NH2Cs composite was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Zeta potential (ZP), Vibrating Sample Magnetometer (VSM), Brunauer-Emmett-Teller method (BET) and X-ray photoelectron spectroscope (XPS). A significant improve in the adsorption profile was established at pH 2 in the order of ATP@Fe3O4-NH2Cs(1:3) > ATP@Fe3O4-NH2Cs(1:1) > ATP@Fe3O4-NH2Cs(3:1) > Fe3O4-NH2Cs > ATP. The maximum removal (%) of Cr(VI) exceeded 94% within a short equilibrium time of 60 min. The adsorption process obeyed the pseudo 2nd order and followed the Langmuir isotherm model with a maximum monolayer adsorption capacity of 294.12 mg/g. In addition, thermodynamics studies elucidated that the adsorption process was spontaneous, randomness and endothermic process. Interestingly, the developed adsorbent retained respectable adsorption properties with acceptable removal efficiency exceeded 58% after ten sequential cycles of reuse. Besides, the results hypothesize that the adsorption process occurs via electrostatic interactions, reduction of Cr(VI) to Cr(III) and ion-exchanging. These findings substantiate that the ATP@Fe3O4-NH2Cs composite could be effectively applied as a reusable adsorbent for removing of Cr(VI) ions from aqueous solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...