Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 33(1): 989-998, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29806488

ABSTRACT

A new series of NSAID thioesters were synthesized and evaluated for their in vitro antitumor effects against a panel of four human tumor cell lines, namely: HepG2, MCF-7, HCT-116 and Caco-2, using the MTT assay. Compared to the reference drugs 5-FU, afatinib and celecoxib, compounds 2b, 3b, 6a, 7a, 7b and 8a showed potent broad-spectrum antitumor activity against the selected tumour cell lines. Accordingly, these compounds were selected for mechanistic studies about COX inhibition and kinase assays. In vitro COX-1/COX-2 enzyme inhibition assay results indicated that compounds 2b, 3b, 6a, 7a, 7b, 8a and 8 b selectively inhibited the COX-2 enzyme (IC50 = ∼0.20-0.69 µM), with SI values of (>72.5-250) compared with celecoxib (IC50 = 0.16 µM, COX-2 SI: > 312.5); however, all the tested compounds did not inhibit the COX-1 enzyme (IC50 > 50 µM). On the other hand, EGFR, HER2, HER4 and cSrc kinase inhibition assays were evaluated at a 10 µM concentration. The selected candidates displayed limited activities against the various tested kinases; the compounds 2a, 3b, 6a, 7a, 7b and 8a showed no activity to weak activity (% inhibition = ∼0-10%). The molecular docking study revealed the importance of the thioester moiety for the interaction of the drugs with the amino acids in the active sites of COX-2. The aforementioned results indicated that thioester based on NSAID scaffolds derivatives may serve as new antitumor compounds.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carboxylic Acids/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Molecular Docking Simulation , Sulfhydryl Compounds/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents , Carboxylic Acids/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry
2.
J Enzyme Inhib Med Chem ; 31(1): 78-89, 2016.
Article in English | MEDLINE | ID: mdl-25815668

ABSTRACT

A novel series of 3-benzyl-substituted-4(3H)-quinazolinones were designed, synthesized and evaluated for their in vitro antitumor activity. The results of this study demonstrated that 2-(3-benzyl-6-methyl-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide, 2-(3-benzyl-6,7-dimethoxy-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)acetamide and 3-(3-benzyl-6-methyl-4-oxo-3,4-dihydroquinazolin-2-ylthio)-N-(3,4,5-trimethoxyphenyl)-propanamide have shown amazing broad spectrum antitumor activity with mean GI(50) (10.47, 7.24 and 14.12 µM. respectively), and are nearly 1.5-3.0-fold more potent compared with the positive control 5-FU with mean GI50, 22.60 µM. On the other hand, compounds 6 and 10 yielded selective activities toward CNS, renal and breast cancer cell lines, whereas compound 9 showed selective activities towards leukemia cell lines. Molecular docking methodology was performed for compounds 7 and 8 into ATP binding site of EGFR-TK which showed similar binding mode to erlotinib, while compound 11 into ATP binding site of B-RAF kinase inhibited the growth of melanoma cell lines through inhibition of B-RAF kinase, similar to PLX4032.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quinazolinones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Quinazolinones/chemical synthesis , Quinazolinones/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...