Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 21(16): 9764-76, 2014.
Article in English | MEDLINE | ID: mdl-24764003

ABSTRACT

Sediment management from stormwater infiltration basins represents a real environmental and economic issue for stakeholders due to the pollution load and important tonnages of these by-products. To reduce the sediment volumes to treat, organic and metal micropollutant-bearing phases should be identified. A combination of density fractionation procedure and microanalysis techniques was used to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and trace metals (Cd, Cr, Cu, Ni, Pb, and Zn) within variable density fractions for three urban stormwater basin sediments. The results confirm that PAHs are found in the lightest fractions (d < 1.9, 1.9 < d < 2.3 g cm(-3)) whereas trace metals are equally distributed within the light, intermediary, and highest fractions (d < 1.9, 1.9 < d < 2.3, 2.3 < d < 2.6, and d > 2.8 g cm(-3)) and are mostly in the 2.3 < d < 2.6 g cm(-3) fraction. The characterization of the five fractions by global analyses and microanalysis techniques (XRD and MEB-EDX) allowed us to identify pollutant-bearing phases. PAHs are bound to the organic matter (OM) and trace metals to OM, clays, carbonates and dense particles. Moreover, the microanalysis study underlines that OM is the main constituent responsible for the aggregation, particularly for microaggregation. In terms of sediment management, it was shown that density fractionation is not suitable for trace metals but could be adapted to separate PAH-enriched phases.


Subject(s)
Geologic Sediments/chemistry , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Cities , Rain/chemistry , Water/chemistry
2.
Environ Sci Pollut Res Int ; 21(8): 5329-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24453012

ABSTRACT

Urban stormwater infiltration basins are designed to hold runoff from impervious surfaces and allow the settling of sediments and associated pollutants. However concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants on groundwater, soils and ecosystems. In this context, sediment characterization represents a key issue for local authorities in terms of management strategies. During the last two decades, several studies were launched including either physical or chemical characterization of stormwater sediments but without real synthesis of data and methods used. Consequently, there is an important need for reviewing the current experimental techniques devoted to the physico-chemical characterization of sediment. The review is based on the outcomes of two experimental sites for which long term monitoring and data collection have been done: the Cheviré basin (near Nantes) and the Django Reinhardt basin (near Lyon). The authors summarize the studies dealing with bulk properties, pollutant contents, their potential mobility and speciation. This paper aims at promoting the significant progresses that were made through a multidisciplinary approach involving multi-scaled and combined experimental techniques.


Subject(s)
Drainage, Sanitary , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Cities , Ecosystem , Environmental Monitoring , France , Fresh Water/chemistry , Groundwater , Hydrology , Rain , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...