Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 573: 96-110, 2022 08.
Article in English | MEDLINE | ID: mdl-35738174

ABSTRACT

Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein-protein interactions. Three databases were virtually screened, namely FDA-approved drugs (DrugBank), Northern African Natural Products Database (NANPDB) and South African Natural Compounds Database (SANCDB) with a total of 8158 compounds. Further validation for 9 candidates via molecular dynamics simulations for 100 ns recommended potential binders to the NSP6 binding site. The proposed candidates are recommended for biological testing to cease the rapidly growing pandemic.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
2.
Matrix Biol Plus ; 6-7: 100030, 2020 May.
Article in English | MEDLINE | ID: mdl-33543027

ABSTRACT

Inflammatory breast cancer (IBC) is the most aggressive and lethal form of breast cancer, characterized by a high infiltration of tumor-associated macrophages and poor prognosis. To identify new biomarkers and to elucidate the molecular mechanisms underlying IBC pathogenesis, we investigated the expression pattern of heparanase (HPSE) and its activator cathepsin L (CTSL). First, we quantitated the HPSE and CTSL mRNA levels in a cohort of breast cancer patients after curative surgery (20 IBC and 20-non-IBC). We discovered that both HPSE and CTSL mRNA levels were significantly induced in IBC tissue vis-à-vis non-IBC patients (p <0 .05 and p <0 .001, respectively). According to the molecular subtypes, HPSE mRNA levels were significantly higher in carcinoma tissues of triple negative (TN)-IBC as compared to TN-non-IBC (p <0 .05). Mechanistically, we discovered that pharmacological inhibition of HPSE activity resulted in a significant reduction of invasiveness in the IBC SUM149 cell line. Moreover, siRNA-mediated HPSE knockdown significantly downregulated the expression of the metastasis-related gene MMP2 and the cancer stem cell marker CD44. We also found that IBC tumors revealed robust heparanase immune-reactivity and CD163+ M2-type tumor-associated macrophages, with a positive correlation of both markers. Moreover, the secretome of axillary tributaries blood IBC CD14+ monocytes and the cytokine IL-10 significantly upregulated HPSE mRNA and protein expression in SUM149 cells. Intriguingly, massively elevated IL-10 mRNA expression with a trend of positive correlation with HPSE mRNA expression was detected in carcinoma tissue of IBC. Our findings highlight a possible role played by CD14+ monocytes and CD163+ M2-type tumor-associated macrophages in regulating HPSE expression possibly via IL-10. Overall, we suggest that heparanase, cathepsin L and CD14+ monocytes-derived IL-10 may play an important role in the pathogenesis of IBC and their targeting could have therapeutic implications.

SELECTION OF CITATIONS
SEARCH DETAIL
...