Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 219, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168481

ABSTRACT

Theoretical research on the keto-enol tautomerization of 2-(2-Hydroxyphenyl)-1-aza azulene (2HPhAZ) and its thiol-thione (2MPhAZ) analouge has been performed using the density functional B3LYP method with the 6-311 + + G(2d,2p) basis set in gas and ethanol phases. The findings of the MO computation on the energy scale and the prediction of the frontier molecular orbital (FMO) energies demonstrate that the tautomeric structures exist in a static mixture in the ground state, with the enol and thiol structure being more stable than the keto and thione structures in gas phase. The ethanol solvent causes some reordering of the relative stability of 2HPhAZ and 2MPhAZ conformers. The geometries created at the B3LYP/6-311 + + G(2d,2p) level of theory were used for NBO analysis. In the tautomerization of 2HPhAZ and its mercapto analogue 2-(2-Mercaptophenyl)-1-azaazulene (2MPhAZ), it has been found that the O(S)-C sigma bond is weak due to nO(S) -> σ*C25-O26(S26) and nO(S) -> σ*C15-N16 delocalization. It is also noted that the resulting p character of the corresponding oxygen (sulfur) natural hybrid orbital (NHO) of σO(S)-C bond orbital is related to the decreased occupancy of the localized σO(S)-C orbital in the idealized Lewis structure or the increased occupancy of σ*O(S)-C of the non-Lewis orbital and their subsequent impact on molecular stability and geometry (bond lengths) in gas phase and ethanol. Additionally, the energy of charge transfer decreases as the potential rotamers' Hammett constants (R1-R3 for O(S) atoms) increase. The partial charge distribution on the skeleton atoms demonstrates that the intra- and intermolecular interactions can be significantly influenced by the electrostatic attraction or repulsion between atoms. Lastly, the currently applied NBO-based HB strength indicator enables a fair prediction of the frequency of the proton donor NH stretching mode, but this simple picture is hidden by abundant hype conjugative effects.

2.
Sci Rep ; 13(1): 15626, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730839

ABSTRACT

Five stable tautomer and rotamers of the 2-(2-Mercaptophenyl)-1-azaazulene (thiol, thione, R1, R2, and R3) molecules were studied using density functional theory (DFT). The geometries of the studied tautomer and rotamers were fully optimized at the B3LYP/6-31G(d,p) level. Thermodynamic calculations were performed at M06-2X/6-311G++(2d,2p) and ωB97XD/6-311G++(2d,2p) in the gas phase and ethanol solution conditions modeled by the solvation model based on density (SMD). The kinetic constant of tautomer and rotamers conversion was calculated in the temperature range 270-320 K using variational transition state theory (VTST) accompanied by one-dimensional wigner tunneling correction. Energy refinement at CCSD(T)/6-311++G(2d,2p) in the gas phase has been calculated. All the studied DFT methods qualitatively give similar tautomer stability orders in the gas phase. The ethanol solvent causes some reordering of the relative stability of 2-(2-Mercaptophenyl)-1-azaazulene conformers. The transition states for the 2-(2-Mercaptophenyl)-1-azaazulene tautomerization and rotamerization processes were also determined. The reactivity, electric dipole moment, and spectroscopic properties of the studied tautomer and rotamers were computed. The hyper-Rayleigh scattering (ßHRS), and depolarization ratio (DR) exhibited promising optical properties when nonlinear optical properties were calculated.

3.
RSC Adv ; 13(36): 25081-25092, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37622010

ABSTRACT

The doping of TiO2 with metals and non-metals is considered one of the most significant approaches to improve its photocatalytic efficiency. In this study, the photodegradation of methyl orange (MO) was examined in relation to the impact of Bi-doping of TiO2. The doped TiO2 with various concentrations of metal was successfully synthesized by a one-step hydrothermal method and characterized using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and UV-vis spectroscopy. The XRD results revealed that the anatase phase, with an average crystallite size of 16.2 nm, was the main phase of TiO2. According to the anatase texture results, it was found that the doping of TiO2 increased the specific surface area for Bi2O3@TiO2 without a change in the crystal structure or the crystal phase of TiO2. Also, XPS analysis confirmed the formation of Ti4+ and Ti3+ as a result of doping with Bi. The activities of both pure TiO2 and Bi-doped TiO2 were tested to study their ability to decolorize MO dye in an aqueous solution. The photocatalytic degradation of MO over Bi2O3@TiO2 reached 98.21%, which was much higher than the 42% achieved by pure TiO2. Doping TiO2 with Bi increased its visible-light absorption as Bi-doping generated a new intermediate energy level below the CB edge of the TiO2 orbitals, causing a shift in the band gap from the UV to the visible region, thus enhancing its photocatalytic efficiency. In addition, the effects of the initial pH, initial pollutant concentration, and contact time were examined and discussed.

4.
Sci Rep ; 13(1): 10260, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355719

ABSTRACT

Herein, we investigated the thermodynamic stability and opto-electronic properties of a newly BN-doped azulene. The gas-phase formation enthalpies of 11 BN-doped azulene were calculated by the atomization energy method using three computational models (CBS-APNO, CBS-QB3, and G3MP2). The results suggest that AZ-1N9B exhibits the highest stability among the studied isomers. On the other hand, AZ-1B9N and AZ-9B10N display nearly equal stability with relative energies of 19.36 and 19.82 kcal/mol at CBS-QB3, respectively. These two isomers are considered the least stable among the investigated compounds. The frontier molecular orbitals (FMO), ionization energies (IE), and electron affinities (EA) of these isomers were discussed. Additionally, the electronic absorption spectra of the BN-doped azulenes were computed using the TD-B3LYP/6-31 + G(d,p) and TD-CAM-B3LYP level of theories, which using a long-range corrected hybrid functional in acetone. The computational results obtained in this research are align closely with the existing literature, thereby reinforcing the credibility and reliability of our findings.


Subject(s)
Azulenes , Reproducibility of Results , Thermodynamics , Isomerism
5.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049792

ABSTRACT

This work aimed to evaluate in vitro DNA binding mechanistically of cationic nitrosyl ruthenium complex [RuNOTSP]+ and its ligand (TSPH2) in detail, correlate the findings with cleavage activity, and draw conclusions about the impact of the metal center. Theoretical studies were performed for [RuNOTSP]+, TSPH2, and its anion TSP-2 using DFT/B3LYP theory to calculate optimized energy, binding energy, and chemical reactivity. Since nearly all medications function by attaching to a particular protein or DNA, the in vitro calf thymus DNA (ctDNA) binding studies of [RuNOTSP]+ and TSPH2 with ctDNA were examined mechanistically using a variety of biophysical techniques. Fluorescence experiments showed that both compounds effectively bind to ctDNA through intercalative/electrostatic interactions via the DNA helix's phosphate backbone. The intrinsic binding constants (Kb), (2.4 ± 0.2) × 105 M-1 ([RuNOTSP]+) and (1.9 ± 0.3) × 105 M-1 (TSPH2), as well as the enhancement dynamic constants (KD), (3.3 ± 0.3) × 104 M-1 ([RuNOTSP]+) and (2.6 ± 0.2) × 104 M-1 (TSPH2), reveal that [RuNOTSP]+ has a greater binding propensity for DNA compared to TSPH2. Stopped-flow investigations showed that both [RuNOTSP]+ and TSPH2 bind through two reversible steps: a fast second-order binding, followed by a slow first-order isomerization reaction via a static quenching mechanism. For the first and second steps of [RuNOTSP]+ and TSPH2, the detailed binding parameters were established. The total binding constants for [RuNOTSP]+ (Ka = 43.7 M-1, Kd = 2.3 × 10-2 M-1, ΔG0 = -36.6 kJ mol-1) and TSPH2 (Ka = 15.1 M-1, Kd = 66 × 10-2 M, ΔG0 = -19 kJ mol-1) revealed that the relative reactivity is approximately ([RuNOTSP]+)/(TSPH2) = 3/1. The significantly negative ΔG0 values are consistent with a spontaneous binding reaction to both [RuNOTSP]+ and TSPH2, with the former being very favorable. The findings showed that the Ru(II) center had an effect on the reaction rate but not on the mechanism and that the cationic [RuNOTSP]+ was a more highly effective DNA binder than the ligand TSPH2 via strong electrostatic interaction with the phosphate end of DNA. Because of its higher DNA binding affinity, cationic [RuNOTSP]+ demonstrated higher cleavage efficiency towards the minor groove of pBR322 DNA via the hydrolytic pathway than TSPH2, revealing the synergy effect of TSPH2 in the form of the complex. Furthermore, the mode of interaction of both compounds with ctDNA has also been supported by molecular docking.


Subject(s)
Coordination Complexes , Ruthenium , Molecular Docking Simulation , Ruthenium/chemistry , Ligands , Nitric Oxide , DNA/chemistry , Coordination Complexes/chemistry , DNA Cleavage
6.
Molecules ; 27(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807398

ABSTRACT

The thermal stability and mesomorphic behavior of a new biphenyl azomethine liquid crystal homologues series, (E)-4-(([1,1'-biphenyl]-4-ylmethylene)amino)phenyl 4-(alkoxy)benzoate, In, were investigated. The chemical structures of the synthesized compounds were characterized using FT-IR, NMR, and elemental analyses. Differential scanning calorimetry (DSC) and polarized optical microscopy were employed to evaluate the mesomorphic characteristics of the designed homologues. The examined homologues possessed high thermal stability and broad nematogenic temperature ranges. Furthermore, the homologues were covered by enantiotropic nematic phases. The experimental measurements of the mesomorphic behavior were substantiated by computational studies using the density functional theory (DFT) approach. The reactivity parameters, dipole moments, and polarizability of the studied molecules are discussed. The theoretical calculations demonstrated that as the chain length increased, the polarizability of the studied series increased; while it did not significantly affect the HOMO-LUMO energy gap and other reactivity descriptors, the biphenyl moiety had an essential impact on the stability of the possible geometries and their thermal as well as physical parameters.

7.
ACS Omega ; 7(16): 14222-14238, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35559155

ABSTRACT

Tautomerization of 2-(2-hydroxyphenyl)-1-azaazulene (2OHPhAZ) in the gas phase and ethanol has been studied using B3LYP, M06-2X, and ωB97XD density functional theory (DFT) with different basis sets. For more accurate data, energies were refined at CCSD(T)/6-311++G(2d,2p) in the gas phase. Nuclear magnetic resonance (NMR), aromaticity, Fukui functions, acidity, and basicity were also calculated and compared with experimental data. Time-dependent density functional theory (TDDFT)-solvation model based on density (TDDFT-SMD) calculations in acetonitrile have been utilized for the simulation of UV-vis electronic spectra. In addition, electronic structures of the investigated system have been discussed. The results reveal that the enol form (2OHPhAZ) is thermodynamically and kinetically stable relative to the keto tautomer (2OPhAZ) and different rotamers (2OHPhAZ-R1:R3) in the gas phase and ethanol. A comparison with the experiment illustrates a good agreement and supports the computational findings.

9.
Mikrochim Acta ; 189(1): 3, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34855016

ABSTRACT

A dual-function organic-inorganic mesoporous structure is reported for naked-eye detection and removal of uranyl ions from an aqueous environment. The mesoporous sensor/adsorbent is fabricated via direct template synthesis of highly ordered silica monolith (HOM) starting from a quaternary microemulsion liquid crystalline phase. The produced HOM is subjected to further modifications through growing an organic probe, omega chrome black blue G (OCBBG), in the cavities and on the outer surface of the silica structure. The spectral response for [HOM-OCBBG → U(VI)] complex shows a maximum reflectance at λmax = 548 nm within 1 min response time (tR); the LOD is close to 9.1 µg/L while the LOQ approaches 30.4 µg/L, and this corresponds to the range of concentration where the signal is linear against U(VI) concentration (i.e., 5-1000 µg/L) at pH 3.4 with standard deviation (SD) of 0.079 (RSD% = 11.7 at n = 10). Experiments and DFT calculations indicate the existence of strong binding energy between the organic probe and uranyl ions forming a complex with blue color that can be detected by naked eyes even at low uranium concentrations. With regard to the radioactive remediation, the new mesoporous sensor/captor is able to reach a maximum capacity of 95 mg/g within a few minutes of the sorption process. The synthesized material can be regenerated using simple leaching and re-used several times without a significant decrease in capacity.

10.
Chemosphere ; 255: 127031, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32417518

ABSTRACT

Oxidations of aniline (AN) initiated by OH-radicals are simulated in the temperature range 200-400 K using DFT/M06-2X/6-311++G(2df,2p) and ab initio ROCBS-QB3 levels. Chemical kinetics of such reactions were investigated based on several approaches including classical transition state theory (TST), conical variational transition state theory (CVT), and Rice-Ramsperger-Kassel-Marcus master equation (RRKM-ME) theories. Under atmospheric conditions, the reaction of OH radical with AN and the subsequent reactions with O2 molecules are investigated. The results indicate that the majority of O2 addition goes to the anti-directions with a branching ratio of 97.7% and produces the bicyclic peroxy radicals (BPRs) that can react with NO radical to form bicyclic alkoxy radicals (BARs). The latter compounds can be stabilized either by cyclization or via ring cleavage.


Subject(s)
Air Pollutants/analysis , Aniline Compounds/analysis , Atmosphere/chemistry , Hydroxyl Radical/chemistry , Models, Theoretical , Aminophenols/analysis , Kinetics , Nitrobenzenes/analysis , Oxidation-Reduction , Photoperiod , Temperature
11.
Int J Biol Macromol ; 154: 621-633, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32179117

ABSTRACT

Drug delivery systems with controlled release have been considered important tools for the treatment of various diseases. The efficacy of the drug can be enhanced by increasing its solubility, stability, bioavailability, and specific site delivery. Herein, we investigated cisplatin (cisP) loading efficacy and release potentiality on chitosan (CS) functionalized with magnetite (M), silicon dioxide (S), and graphene oxide (GO) nanoparticles. Different nanocomposites [chitosan-coated magnetite, silicon dioxide, and graphene oxide (CS/M/S/GO); chitosan-coated magnetite and silicon dioxide (CS/M/S); chitosan-coated silicon dioxide (CS/S); and chitosan-coated magnetite (CS/M)] were prepared. The prepared nanocomposites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). DFT calculations were employed to explore the interaction mechanism of cisP with a selected chitosan-functionalized nanocomposite in the gas phase and water media. The UV-Vis spectroscopy was used to study cisP loading and release from the prepared nanocomposites. The results showed that the highest loading efficacy was achieved by CS/M and CS/M/S/GO nanocomposites (87% and 84% respectively). While the releasing potentiality for CS/M composite was the highest compared with the other ones (91%).


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Ferrosoferric Oxide/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Silicon Dioxide/chemistry , Cisplatin/metabolism , Drug Liberation
12.
RSC Adv ; 10(68): 41283-41295, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516530

ABSTRACT

Recently, the incorporation of hydrophobicity on the surface of UiO-66(Zr) has received much attention due to the deactivation of hydrophilic active sites of UiO-66(Zr) upon water adsorption. In this work, we report UiO-66(Zr) catalysts with an assortment of surface hydrophobicities fabricated by the solvent-free method to elucidate the impact of the environment framing Lewis acid sites on their catalytic activity in the production of fatty acid methyl ester (biodiesel) via the esterification of fatty acids at room temperature with high selectivity (100%) and good recyclability. A detailed structural analysis of the materials by N2 sorption, FT-IR, SEM, XRD, water contact angle measurement, dynamic liquid scattering (DLS), NMR and TGA revealed the fabrication of stearic acid-grafted UiO-66(Zr) catalysts (10SA/UiO-66) with fine particle size and a highly hydrophobic network. 10SA/UiO-66(Zr) with enhanced hydrophobicity exhibited superior catalytic performance in the esterification of a fatty acid with a long alkyl chain compared with conventional solid acid catalysts and even liquid acid catalysts. Detailed kinetic studies corroborated that the adsorption of lipophilic acids at the Lewis acid sites besides the enhancement of wettability between the reactants was facilitated by the hydrophobic environment, thus significantly motivating the esterification reaction at room temperature. Furthermore, 10SA/UiO-66(Zr) showed good catalytic activity in the esterification of oleic acid in the presence of water (∼10% in the light of acid weight).

13.
Sci Rep ; 9(1): 15361, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31653887

ABSTRACT

In this work, a theoretical investigation of thermochemistry and kinetics of the oxidation of bifunctional 2-Methoxyethanol (2ME) biofuel using methyl radical was introduced. Potential-energy surface for various channels for the oxidation of 2ME was studied at density function theory (M06-2X) and ab initio CBS-QB3 levels of theory. H-atom abstraction reactions, which are essential processes occurring in the initial stages of the combustion or oxidation of organic compounds, from different sites of 2ME were examined. A similar study was conducted for the isoelectronic n-butanol to highlight the consequences of replacing the ϒ CH2 group by an oxygen atom on the thermodynamic and kinetic parameters of the oxidation processes. Rate coefficients were calculated from the transition state theory. Our calculations show that energy barriers for n-butanol oxidation increase in the order of α < O < ϒ < ß < ξ, which are consistent with previous data. However, for 2ME the energy barriers increase in the order α < ß < ξ < O. At elevated temperatures, a slightly high total abstraction rate is observed for the bifunctional 2ME (4 abstraction positions) over n-butanol (5 abstraction positions).

14.
Phys Chem Chem Phys ; 21(32): 17859-17867, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31378789

ABSTRACT

The redox switching of non-alternant azulenequinone/hydroquinone molecules is investigated using density functional theory and the nonequilibrium Green's function. We examined the electronic transport properties of these molecules when subtended between gold electrodes. The results indicated that the reduction of 1,5-azulenequinone and oxidation of 1,7-azulene hydroquinone 2,6-dithiolate lead to a significant enhancement of the current compared to the respective oxidation of 1,5-azulene hydroquinone and reduction of 1,7-azulenequinone, thus "switching on" the transmission. The significance of the position of the functional group on the switching behavior has been analyzed and whether destructive quantum interference exists in the electron transport of the 1,5 position in particular has been addressed. Our work provides theoretical foundations for organic redox switching components in nanoelectronic circuits.

15.
Sci Rep ; 9(1): 4535, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872682

ABSTRACT

Oxygenated organic compounds derived from biomass (biofuel) are a promising alternative renewable energy resource. Alcohols are widely used as biofuels, but studies on bifunctional alcohols are still limited. This work investigates the unimolecular thermal degradation of 2-methoxyethanol (2ME) using DFT/BMK and ab initio (CBS-QB3 and G3) methods. Enthalpies of the formation of 2ME and its decomposition species have been calculated. Conventional transition state theory has been used to estimate the rate constant of the pyrolysis of 2ME over a temperature range of 298-2000 K. Production of methoxyethene via 1,3-H atom transfer represents the most kinetically favored path in the course of 2ME pyrolysis at room temperature and requires less energy than the weakest Cα - Cß simple bond fission. Thermodynamically, the most preferred channel is methane and glycoladhyde formation. A ninefold frequency factor gives a superiority of the Cα - Cß bond breaking over the Cγ - Oß bond fission despite comparable activation energies of these two processes.

16.
Molecules ; 19(7): 9712-35, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25006782

ABSTRACT

Iodine-catalyzed condensation of 2-amino-3,5-dibromobenzamide with cyclohexane-1,3-dione derivatives in refluxing toluene afforded the corresponding bisquinazolinones. Suzuki-Miyaura cross-coupling of the latter with arylboronic acids afforded tetraarylbisquinazolinones. The electronic absorption and emission properties of these tetraarylbisquinazolinones were measured in dimethylsulfoxide (DMSO) and acetic acid by means of UV-Vis and fluorescence spectroscopic techniques in conjunction with quantum chemical methods to understand the influence of substituents on intramolecular charge transfer (ICT).


Subject(s)
Photochemical Processes , Quinazolinones/chemistry , Quinazolinones/chemical synthesis
17.
Molecules ; 19(1): 795-818, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24434693

ABSTRACT

The 2-aryl-6,8-dibromo-4-chloroquinazolines derived from the 2-aryl-6,8-dibromoquinazolin-4(3H)-ones were subjected to the Sonogashira cross-coupling with terminal acetylenes at room temperature to afford novel 2-aryl-6,8-dibromo-4-(alkynyl)quinazoline derivatives. Further transformation of the 2-aryl-6,8-dibromo-4-(phenylethynyl)quinazolines via Suzuki-Miyaura cross-coupling with arylboronic acids occurred without selectivity to afford the corresponding 2,6,8-triaryl-4-(phenylethynyl)quinazolines. The absorption and emission properties of these polysubstituted quinazolines were also determined.


Subject(s)
Quinazolines/chemical synthesis , Catalysis , Cyclization , Iodine/chemistry , Models, Chemical , Oxidation-Reduction , Quantum Theory , Quinazolines/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
18.
J Phys Chem A ; 115(13): 2837-46, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21401049

ABSTRACT

The thermochemistry and kinetics of the pyrolysis of 2-butanol have been conducted using ab initio methods (CBS-QB3 and CCSD(T)) and density functional theory (DFT). The enthalpies of formation and bond dissociation energies of some alcohols including 2-butanol and its derived radicals have been calculated. A variety of simple and complex dissociations have been examined. The results indicated that dehydration to 1- and 2-butene through four-center transition states is the most dominant channel at low to moderate temperatures (T ≤ 700 K), where formation of butenes is kinetically and thermodynamically more favorable than other complex and simple bond scission reactions. Although the C-C bond fission channels require more energy than needed for some complex decomposition reactions, the former pathways predominate at higher temperatures (T ≥ 800 K) due to the higher values of the pre-exponential factors. The progress of the complex decomposition reactions has been followed through intrinsic reaction coordinate (IRC) calculations to understand the mechanism of transformation of 2-butanol to different products.

19.
Article in English | MEDLINE | ID: mdl-21081283

ABSTRACT

A novel (N6O4) macrocyclic ligand (L) and its Cu(II) complexes have been prepared and characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and conductivity measurements. Quantum chemical calculations have also been carried out at B3LYP/6-31+G(d,p) to study the structure of the ligand and one of its complexes. The results show a novel macrocyclic ligand with potential amide oxygen atom, amide and amine nitrogen atoms available for coordination. Distorted square pyramidal ([Cu(L)Cl]Cl·2.5H2O (1), [Cu(L)NO3]NO(3)·3.5H2O (2), and [Cu(L)Br]Br·3H2O (4) and octahedral ([Cu(L)(OAc)2]·5H2O (3)) geometries were proposed. The EPR data of 1, 2, and 4 indicate d1x2(-y)2 ground state of Cu(II) ion with a considerable exchange interaction. The measured cytotoxicity for L and its complexes (1, 2) against three tumor cell lines showed that coordination improves the antitumor activity of the ligand; IC50 for breast cancer cells are ≈8.5, 3, and 4 µg/mL for L and complexes (1) and (2), respectively.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Copper/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Cell Line, Tumor , Electron Spin Resonance Spectroscopy , Electrons , Humans , Ligands , Magnetic Resonance Spectroscopy , Magnetics , Mass Spectrometry , Models, Chemical , Spectrophotometry, Infrared , Temperature , Thermogravimetry , Vibration
20.
J Phys Chem A ; 114(30): 7996-8002, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20666546

ABSTRACT

Density functional theory (DFT)/BMK and CBS-QB3 ab initio calculations have been carried out to study the structures and energetics of unimolecular decomposition reactions of isopropyl butanoate (IPB, C(3)H(7)C(O)OCH(CH(3))(2)) as a model biofuel. The results show a good performance of the BMK method. Among seven different dissociation channels of IPB, formation of butanoic acid and propene via a six-membered ring transition state is the most favorable reaction. On the other hand, formation of lower esters is hindered by high-energy barriers and unlikely occurs except at elevated temperatures. Simple bond scission costs less energy than lower ester formation. A comparison with methyl and ethyl esters indicates faster decomposition of IPB. The changes in bond lengths along minimum energy paths are discussed.


Subject(s)
2-Propanol/chemistry , Biofuels , Butyrates/chemistry , Computer Simulation , Models, Biological , Quantum Theory , Hot Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...