Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 205: 116645, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925024

ABSTRACT

Assessing water quality in arid regions is vital due to scarce resources, impacting health and sustainable management.This study examines groundwater quality in Assuit Governorate, Egypt, using Principal Component Analysis, GIS, and Machine Learning Techniques. Data from 217 wells across 12 parameters were analyzed, including TDS, EC, Cl-, Fe++, Ca++, Mg++, Na+, SO4--, Mn++, HCO3-, K+, and pH. The Water Quality Index (WQI) was calculated, and ArcGIS mapped its spatial distribution. Machine learning algorithms, including Ridge Regression, XGBoost, Decision Tree, Random Forest, and K-Nearest Neighbors, were used for predictive analysis. Higher concentrations of Na, K, Ca, Mg, Mn, and Fe were correlated with industrial and densely populated areas. Most samples exhibited excellent or good quality, with a small percentage unsuitable for consumption. Ridge Regression showed the lowest MAPE rates (0.22 % training, 0.26 % in testing). This research highlights the importance of advanced machine learning for sustainable groundwater management in arid regions. Thus, our results could provide valuable assistance to both national and local authorities involved in water management decisions, particularly for water resource managers and decision-makers. This information can aid in the development of regulations aimed at safeguarding and sustainably managing groundwater resources, which are essential for the overall prosperity of the country.

2.
J Environ Manage ; 362: 121269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823303

ABSTRACT

Monitoring and assessing groundwater quality and quantity lays the basis for sustainable management. Therefore, this research aims to investigate various factors that affect groundwater quality, emphasizing its distance to the primary source of recharge, the Nile River. To this end, two separate study areas have been considered, including the West and West-West of Minia, Egypt, located around 30 and 80 km from the Nile River. The chosen areas rely on the same aquifer as groundwater source (Eocene aquifer). Groundwater quality has been assessed in the two studied regions to investigate the difference in quality parameters due to the river's distance. The power of machine learning to associate different variables and generate beneficial relationships has been utilized to mitigate the cost consumed in chemical analysis and alleviate the calculation complexity. Two adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the water quality index (WQI) and the irrigation water quality index (IWQI) using EC and the distance to the river. The findings of the assessment of groundwater quality revealed that the groundwater in the west of Minia exhibits suitability for agricultural utilization and partially meets the criteria for potable drinking water. Conversely, the findings strongly recommend the implementation of treatment processes for groundwater sourced from the West-West of Minia before its usage for various purposes. These outcomes underscore the significant influence of surface water recharge on the overall quality of groundwater. Also, the results revealed the uncertainty of using sodium adsorption ratio (SAR), Sodium Percentage (Na%), and Permeability Index (PI) techniques in assessing groundwater for irrigation and recommended using IWQI. The developed ANFIS models depicted perfect accuracy during the training and validation stages, reporting a coefficient of correlation (R) equal to 0.97 and 0.99 in the case of WQI and 0.96 and 0.98 in the case of IWQI. The research findings could incentivize decision-makers to monitor, manage, and sustain groundwater.


Subject(s)
Groundwater , Water Quality , Groundwater/chemistry , Egypt , Rivers/chemistry , Environmental Monitoring , Fuzzy Logic , Water Pollutants, Chemical/analysis
3.
Environ Geochem Health ; 42(7): 2101-2120, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31823180

ABSTRACT

The Ismailia Canal is one of the most important tributaries of the River Nile in Egypt. It is threatened by extinction from several sources of pollution, in addition to the intersection and nearness of the canal path with the Bilbayes drain and the effluent from the two largest conventional wastewater treatment plants in Greater Cairo. In this study, the integration of remote sensing and geospatial information system techniques is carried out to enhance the contribution of satellite data in water quality management in the Ismailia Canal. A Landsat-8 operational land imager image dated 2018 was used to detect the land use and land cover changes in the area of study, in addition to retrieving various spectral band ratios. Statistical correlations were applied among the extracted band ratios and the measured in situ water quality parameters. The most appropriate spectral band ratios were extracted from the NIR band (near infrared/blue), which showed a significant correlation with eight water quality metrics (CO3, BOD5, COD, TSS, TDS, Cl, NH4, and fecal coliform bacteria). A linear regression model was then established to predict information about these important water quality parameters along Ismailia Canal. The developed models, using linear regression equations for this study, give a set of powerful decision support frameworks with statistical tools to provide comprehensive, integrated views of surface water quality information under similar circumstances.


Subject(s)
Environmental Monitoring/methods , Remote Sensing Technology/methods , Water Pollution/analysis , Water Quality , Biological Oxygen Demand Analysis , Egypt , Enterobacteriaceae , Feces/microbiology , Linear Models , Models, Theoretical , Rivers , Spacecraft , Waste Disposal, Fluid , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...