Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(32): 20779-20789, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34423186

ABSTRACT

Polysulfanilic acid has a low efficiency for the photoelectrochemical (PEC) production of H2 from water splitting due to high recombination rate of charge and low electrical conductivity. Therefore, polyaniline was doped with polysulfanilic acid to form a copolymer and a blend to enhance its PEC heterogeneous catalytic performance. This was achieved through the improvement of visible light absorption and charge carriers' separation property. Herein, nine polymer samples of polysulfanilic acid were synthesized by oxidative polymerization. The structural, morphological, and optical properties of the synthesized polymeric materials were investigated. Interestingly, these polymer samples had multifunctional applications regarding their hydrogen generation efficiency. Photoelectrodes of different compositions from pure and blended polymers were prepared and used for the PEC solar hydrogen production from water. Different PEC parameters including the oxidant role, monochromatic illumination wavelength, and electrode reusability were optimized toward the efficient hydrogen generation. Moreover, the PEC performance was evaluated using key indicators such as photocurrent density, conversion efficiency, and the number of hydrogen moles. The number of hydrogen moles was quantitatively estimated to be 140.4, 160.2, and 300 µmol/h·g at -1 V for the polymer, copolymer, and polymer blend, respectively, in the presence of APS + FeCl3 as an oxidant. Further, other samples of polymers showed antimicrobial properties against different species of bacteria. Hence, the present study may provide a cost-effective method to produce solar hydrogen fuel from water.

2.
Sci Rep ; 10(1): 6137, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32273529

ABSTRACT

Different novel 1,2,4-triazolo[4,3-b][1,2,4,5]tetrazines and 1,2,4-triazolo[4,3-b][1,2,4]triazines have been obtained from heterocyclization of 3-substituted-4-amino-5-substituted-amino-1,2,4-triazoles (3a-d) and 3-substituted-4-amino-5-hydrazino-1,2,4-triazoles (9a,b) with (α and ß) bifunctional compounds like chloromethyl biphenyl-phosphanoxide, pyruvic acid, phenacyl bromide, diethyl oxalate, triethyl orthoformate, triethyl phosphite, fluorinated benzaldehydes, carbon disulfide and ethyl chloroformate under different experimental settings. Fourier transformer infrared analysis (FTIR), Proton nuclear magnetic resonance (1H NMR) and 13C nuclear magnetic resonance (13C NMR), as well as that of the mass spectral data, were used as the appropriate characterization techniques for the chemical structures of all newly synthesized compounds. The newly prepared compounds were examined as an anti-inflammatory, antibacterial agents (against E. coli (Escherichia coli) and P. aeruginosa (Pseudomonas aeruginosa) as examples for Gram-negative bacteria and S. aureus (Staphylococcus aureus) as examples for Gram-positive bacteria), as well as antifungal (against C. albicans (Candida albicans)) agents. The newly prepared compound showed high antibacterial, antifungal, and anti-inflammatory activities in comparing with the commercial antibiotics Indomethacin, Nalidixic acid, Imipenem, and Nystatin. Docking of the most active compounds was performed depending on the results of antibacterial screening and the anti-inflammatory assay.


Subject(s)
Triazines/chemical synthesis , Triazoles/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Candida albicans/drug effects , Escherichia coli/drug effects , Magnetic Resonance Spectroscopy , Mass Spectrometry , Models, Molecular , Molecular Docking Simulation , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Triazines/chemistry , Triazines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
3.
Bioorg Chem ; 94: 103348, 2020 01.
Article in English | MEDLINE | ID: mdl-31699387

ABSTRACT

We report the synthesis of new quinoline-2-one/pyrazole hybrids and their antiapoptotic activity. This effect was studied in sight of decreasing tissue damage induced by I/R in colon of rats using N-acetylcysteine (NAC) as anti-apoptotic reference. Compounds 6a, 6c and 6f showed significant improvement for oxidative stress parameters MDA, SOD, GSH and NOx in comparison with model group and greater than the reference NAC (N-acetylcysteine), whereas compounds 6d and 6e exhibited weaker antioxidant activity when compared with the reference NAC. Moreover, compounds 6a, 6c and 6f showed significant decrease in inflammatory mediators TNFα and CRB greater than NAC when compared to the model group especially compound 6c whose found CRB conc 1.90 (mg/dL) in comparison to NAC of conc 2.13 mg/dL. Additionally, colonic histopathological investigation was performed to all targeted compounds that indicates H&E sections of compounds 6a and 6f revealed apparent normal colonic cells while compound 6e showed dilated blood vessels with more apoptotic cells if compared with NAC. Caspase-3 inhibition assay revealed that compounds 6a, 6b and 6d weaken caspase-3 expression to an extent higher than NAC (1.063, 0.430, 0.731 and 1.115, respectively). Docking studies with caspase-3 revealed that most of the tested compounds showed good binding with the enzyme especially for compound 6d make several interactions better than that of the reference NAC.


Subject(s)
Apoptosis/drug effects , Caspase 3/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Animals , Drug Design , Molecular Docking Simulation , Quinolines/chemical synthesis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...