Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15324, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37714913

ABSTRACT

Renal tubule has distinct metabolic features and functional activity that may be altered during kidney disease. In this paper, we present label-free functional activity imaging of renal tubule in normal and obstructed mouse kidney models using three-dimensional (3D) dynamic optical coherence tomography (OCT) ex vivo. To create an obstructed kidney model, we ligated the ureter of the left kidney for either 7 or 14 days. Two different dynamic OCT (DOCT) methods were implemented to access the slow and fast activity of the renal tubules: a logarithmic intensity variance (LIV) method and a complex-correlation-based method. Three-dimensional DOCT data were acquired with a 1.3 [Formula: see text]m swept-source OCT system and repeating raster scan protocols. In the normal kidney, the renal tubule appeared as a convoluted pipe-like structure in the DOCT projection image. Such pipe-like structures were not observed in the kidneys subjected to obstruction of the ureter for several days. Instead of any anatomical structures, a superficial high dynamics appearance was observed in the perirenal cortex region of the obstructed kidneys. These findings suggest that volumetric LIV can be used as a tool to investigate kidney function during kidney diseases.


Subject(s)
Biological Products , Ureter , Animals , Mice , Tomography, Optical Coherence , Kidney/diagnostic imaging , Kidney Tubules/diagnostic imaging , Product Labeling
2.
J Biomed Opt ; 27(1)2022 01.
Article in English | MEDLINE | ID: mdl-35064657

ABSTRACT

SIGNIFICANCE: The scattering and polarization characteristics of various organs of in vivo wildtype zebrafish in three development stages were investigated using a non-destructive and label-free approach. The presented results showed a promising first step for the usability of Jones-matrix optical coherence tomography (JM-OCT) in zebrafish-based research. AIM: We aim to visualize and quantify the scatter and polarization signatures of various zebrafish organs for larvae, juvenile, and young adult animals in vivo in a non-invasive and label-free way. APPROACH: A custom-built polarization-sensitive JM-OCT setup in combination with a motorized translation stage was utilized to investigate live zebrafish. Depth-resolved scattering (intensity and attenuation coefficient) and polarization (birefringence and degree of polarization uniformity) properties were analyzed. OCT angiography (OCT-A) was utilized to investigate the vasculature label-free and non-destructively. RESULTS: The scatter and polarization signatures of the zebrafish organs such as the eye, gills, and muscles were investigated. The attenuation coefficient and birefringence changes between 1- and 2-month-old animals were evaluated in selected organs. OCT-A revealed the vasculature of in vivo larvae and juvenile zebrafish in a label-free manner. CONCLUSIONS: JM-OCT offers a rapid, label-free, non-invasive, tissue specific, and three-dimensional imaging tool to investigate in vivo processes in zebrafish in various development stages.


Subject(s)
Tomography, Optical Coherence , Zebrafish , Animals , Birefringence , Refraction, Ocular
3.
Biomed Opt Express ; 12(11): 6844-6863, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34858684

ABSTRACT

We present a completely label-free three-dimensional (3D) optical coherence tomography (OCT)-based tissue dynamics imaging method for visualization and quantification of the metabolic and necrotic activities of tumor spheroid. Our method is based on a custom 3D scanning protocol that is designed to capture volumetric tissue dynamics tomography images only in a few tens of seconds. The method was applied to the evaluation of a tumor spheroid. The time-course viability alteration and anti-cancer drug response of the spheroid were visualized qualitatively and analyzed quantitatively. The similarity between the OCT-based dynamics images and fluorescence microscope images was also demonstrated.

4.
Sci Rep ; 11(1): 20054, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625574

ABSTRACT

We demonstrate label-free imaging of the functional and structural properties of microvascular complex in mice liver. The imaging was performed by a custom-built Jones-matrix based polarization sensitive optical coherence tomography (JM-OCT), which is capable of measuring tissue's attenuation coefficient, birefringence, and tiny tissue dynamics. Two longitudinal studies comprising a healthy liver and an early fibrotic liver model were performed. In the healthy liver, we observed distinctive high dynamics beneath the vessel at the initial time point (0 h) and reappearance of high dynamics at 32-h time point. In the early fibrotic liver model, we observed high dynamics signal that reveals a clear network vascular structure by volume rendering. Longitudinal time-course imaging showed that these high dynamics signals faded and decreased over time.


Subject(s)
Liver Cirrhosis/pathology , Liver/blood supply , Tomography, Optical Coherence/methods , Animals , Liver/diagnostic imaging , Liver Cirrhosis/diagnostic imaging , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...